MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovidig Structured version   Unicode version

Theorem ovidig 6191
Description: The value of an operation class abstraction. Compare ovidi 6192. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1  |-  E* z ph
ovidig.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovidig  |-  ( ph  ->  ( x F y )  =  z )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 6084 . 2  |-  ( x F y )  =  ( F `  <. x ,  y >. )
2 ovidig.1 . . . . 5  |-  E* z ph
32funoprab 6170 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
4 ovidig.2 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54funeqi 5474 . . . 4  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
63, 5mpbir 201 . . 3  |-  Fun  F
7 oprabid 6105 . . . . 5  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
87biimpri 198 . . . 4  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } )
98, 4syl6eleqr 2527 . . 3  |-  ( ph  -> 
<. <. x ,  y
>. ,  z >.  e.  F )
10 funopfv 5766 . . 3  |-  ( Fun 
F  ->  ( <. <.
x ,  y >. ,  z >.  e.  F  ->  ( F `  <. x ,  y >. )  =  z ) )
116, 9, 10mpsyl 61 . 2  |-  ( ph  ->  ( F `  <. x ,  y >. )  =  z )
121, 11syl5eq 2480 1  |-  ( ph  ->  ( x F y )  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   E*wmo 2282   <.cop 3817   Fun wfun 5448   ` cfv 5454  (class class class)co 6081   {coprab 6082
This theorem is referenced by:  ovidi  6192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085
  Copyright terms: Public domain W3C validator