MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2ga Unicode version

Theorem ovmpt2ga 6064
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2ga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpt2ga.2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpt2ga  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpt2ga
StepHypRef Expression
1 elex 2872 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpt2ga.2 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 10 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpt2ga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 452 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 simp1 955 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  A  e.  C )
7 simp2 956 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  B  e.  D )
8 simp3 957 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  S  e.  _V )
93, 5, 6, 7, 8ovmpt2d 6062 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
101, 9syl3an3 1217 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   _Vcvv 2864  (class class class)co 5945    e. cmpt2 5947
This theorem is referenced by:  ovmpt2a  6065  ovmpt2g  6069  elovmpt2  6151  offval  6172  offval3  6178  hashbcval  13146  setsvalg  13268  ressval  13292  restval  13430  sylow1lem4  15011  sylow3lem2  15038  sylow3lem3  15039  lsmvalx  15049  mvrfval  16264  opsrval  16315  cnmpt12  17467  cnmpt22  17474  qtopval  17492  flimval  17760  fclsval  17805  stdbdmetval  18162  ucnval  23573  ofcfval3  23751  fmulcl  27034  bropopvvv  27435  wlkon  27682  trlon  27692  pthon  27717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950
  Copyright terms: Public domain W3C validator