MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt4g Unicode version

Theorem ovmpt4g 6135
Description: Value of a function given by the "maps to" notation. (This is the operation analog of fvmpt2 5751.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
ovmpt4g  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpt4g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elisset 2909 . . 3  |-  ( C  e.  V  ->  E. z 
z  =  C )
2 moeq 3053 . . . . . . 7  |-  E* z 
z  =  C
32a1i 11 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z  z  =  C )
4 ovmpt4g.3 . . . . . . 7  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
5 df-mpt2 6025 . . . . . . 7  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
64, 5eqtri 2407 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
73, 6ovidi 6131 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  ( x F y )  =  z ) )
8 eqeq2 2396 . . . . 5  |-  ( z  =  C  ->  (
( x F y )  =  z  <->  ( x F y )  =  C ) )
97, 8mpbidi 208 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  ( x F y )  =  C ) )
109exlimdv 1643 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( E. z  z  =  C  ->  (
x F y )  =  C ) )
111, 10syl5 30 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( C  e.  V  ->  ( x F y )  =  C ) )
12113impia 1150 1  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   E*wmo 2239  (class class class)co 6020   {coprab 6021    e. cmpt2 6022
This theorem is referenced by:  ovmpt2s  6136  ov2gf  6137  ovmpt2dxf  6138  ovmpt2df  6144  ofmres  6282  mapxpen  7209  pwfseqlem2  8467  pwfseqlem3  8468  fullfunc  14030  fthfunc  14031  prfcl  14227  curf1cl  14252  curfcl  14256  hofcl  14283  gsum2d2lem  15474  gsum2d2  15475  gsumcom2  15476  dprdval  15488  dprd2d2  15529  cnmpt21  17624  cnmpt2t  17626  cnmptcom  17631  cnmpt2k  17641  xkocnv  17767  sdclem2  26137  aovmpt4g  27734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025
  Copyright terms: Public domain W3C validator