MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmptss Structured version   Unicode version

Theorem ovmptss 6457
Description: If all the values of the mapping are subsets of a class  X, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
ovmptss.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
ovmptss  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  ->  ( E F G )  C_  X
)
Distinct variable groups:    x, y, A    y, B    x, X, y
Allowed substitution hints:    B( x)    C( x, y)    E( x, y)    F( x, y)    G( x, y)

Proof of Theorem ovmptss
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovmptss.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 mpt2mptsx 6443 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
31, 2eqtri 2462 . . 3  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
43fvmptss 5842 . 2  |-  ( A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  ->  ( F `  <. E ,  G >. )  C_  X )
5 vex 2965 . . . . . . . 8  |-  u  e. 
_V
6 vex 2965 . . . . . . . 8  |-  v  e. 
_V
75, 6op1std 6386 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( 1st `  z
)  =  u )
87csbeq1d 3273 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
95, 6op2ndd 6387 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( 2nd `  z
)  =  v )
109csbeq1d 3273 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 2nd `  z
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
1110csbeq2dv 3662 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
128, 11eqtrd 2474 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
1312sseq1d 3361 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  C_  X  <->  [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
1413raliunxp 5043 . . 3  |-  ( A. z  e.  U_  u  e.  A  ( { u }  X.  [_ u  /  x ]_ B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  <->  A. u  e.  A  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X )
15 nfcv 2578 . . . . 5  |-  F/_ u
( { x }  X.  B )
16 nfcv 2578 . . . . . 6  |-  F/_ x { u }
17 nfcsb1v 3282 . . . . . 6  |-  F/_ x [_ u  /  x ]_ B
1816, 17nfxp 4933 . . . . 5  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
19 sneq 3849 . . . . . 6  |-  ( x  =  u  ->  { x }  =  { u } )
20 csbeq1a 3275 . . . . . 6  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
2119, 20xpeq12d 4932 . . . . 5  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
2215, 18, 21cbviun 4152 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
2322raleqi 2914 . . 3  |-  ( A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  <->  A. z  e.  U_  u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
) [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  C_  X )
24 nfv 1630 . . . 4  |-  F/ u A. y  e.  B  C  C_  X
25 nfcsb1v 3282 . . . . . 6  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
26 nfcv 2578 . . . . . 6  |-  F/_ x X
2725, 26nfss 3327 . . . . 5  |-  F/ x [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X
2817, 27nfral 2765 . . . 4  |-  F/ x A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X
29 nfv 1630 . . . . . 6  |-  F/ v  C  C_  X
30 nfcsb1v 3282 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ C
31 nfcv 2578 . . . . . . 7  |-  F/_ y X
3230, 31nfss 3327 . . . . . 6  |-  F/ y
[_ v  /  y ]_ C  C_  X
33 csbeq1a 3275 . . . . . . 7  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
3433sseq1d 3361 . . . . . 6  |-  ( y  =  v  ->  ( C  C_  X  <->  [_ v  / 
y ]_ C  C_  X
) )
3529, 32, 34cbvral 2934 . . . . 5  |-  ( A. y  e.  B  C  C_  X  <->  A. v  e.  B  [_ v  /  y ]_ C  C_  X )
36 csbeq1a 3275 . . . . . . 7  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
3736sseq1d 3361 . . . . . 6  |-  ( x  =  u  ->  ( [_ v  /  y ]_ C  C_  X  <->  [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
3820, 37raleqbidv 2922 . . . . 5  |-  ( x  =  u  ->  ( A. v  e.  B  [_ v  /  y ]_ C  C_  X  <->  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
3935, 38syl5bb 250 . . . 4  |-  ( x  =  u  ->  ( A. y  e.  B  C  C_  X  <->  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
4024, 28, 39cbvral 2934 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  <->  A. u  e.  A  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X )
4114, 23, 403bitr4ri 271 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  <->  A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  C_  X )
42 df-ov 6113 . . 3  |-  ( E F G )  =  ( F `  <. E ,  G >. )
4342sseq1i 3358 . 2  |-  ( ( E F G ) 
C_  X  <->  ( F `  <. E ,  G >. )  C_  X )
444, 41, 433imtr4i 259 1  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  ->  ( E F G )  C_  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653   A.wral 2711   [_csb 3267    C_ wss 3306   {csn 3838   <.cop 3841   U_ciun 4117    e. cmpt 4291    X. cxp 4905   ` cfv 5483  (class class class)co 6110    e. cmpt2 6112   1stc1st 6376   2ndc2nd 6377
This theorem is referenced by:  relmpt2opab  6458  relxpchom  14309  reldv  19788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379
  Copyright terms: Public domain W3C validator