MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmptss Unicode version

Theorem ovmptss 6287
Description: If all the values of the mapping are subsets of a class  X, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
ovmptss.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
ovmptss  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  ->  ( E F G )  C_  X
)
Distinct variable groups:    x, y, A    y, B    x, X, y
Allowed substitution hints:    B( x)    C( x, y)    E( x, y)    F( x, y)    G( x, y)

Proof of Theorem ovmptss
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovmptss.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 mpt2mptsx 6274 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
31, 2eqtri 2378 . . 3  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
43fvmptss 5692 . 2  |-  ( A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  ->  ( F `  <. E ,  G >. )  C_  X )
5 vex 2867 . . . . . . . 8  |-  u  e. 
_V
6 vex 2867 . . . . . . . 8  |-  v  e. 
_V
75, 6op1std 6217 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( 1st `  z
)  =  u )
87csbeq1d 3163 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
95, 6op2ndd 6218 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( 2nd `  z
)  =  v )
109csbeq1d 3163 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 2nd `  z
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
1110csbeq2dv 3182 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
128, 11eqtrd 2390 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
1312sseq1d 3281 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  C_  X  <->  [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
1413raliunxp 4907 . . 3  |-  ( A. z  e.  U_  u  e.  A  ( { u }  X.  [_ u  /  x ]_ B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  <->  A. u  e.  A  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X )
15 nfcv 2494 . . . . 5  |-  F/_ u
( { x }  X.  B )
16 nfcv 2494 . . . . . 6  |-  F/_ x { u }
17 nfcsb1v 3189 . . . . . 6  |-  F/_ x [_ u  /  x ]_ B
1816, 17nfxp 4797 . . . . 5  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
19 sneq 3727 . . . . . 6  |-  ( x  =  u  ->  { x }  =  { u } )
20 csbeq1a 3165 . . . . . 6  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
2119, 20xpeq12d 4796 . . . . 5  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
2215, 18, 21cbviun 4020 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
2322raleqi 2816 . . 3  |-  ( A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C  C_  X  <->  A. z  e.  U_  u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
) [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  C_  X )
24 nfv 1619 . . . 4  |-  F/ u A. y  e.  B  C  C_  X
25 nfcsb1v 3189 . . . . . 6  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
26 nfcv 2494 . . . . . 6  |-  F/_ x X
2725, 26nfss 3249 . . . . 5  |-  F/ x [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X
2817, 27nfral 2672 . . . 4  |-  F/ x A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X
29 nfv 1619 . . . . . 6  |-  F/ v  C  C_  X
30 nfcsb1v 3189 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ C
31 nfcv 2494 . . . . . . 7  |-  F/_ y X
3230, 31nfss 3249 . . . . . 6  |-  F/ y
[_ v  /  y ]_ C  C_  X
33 csbeq1a 3165 . . . . . . 7  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
3433sseq1d 3281 . . . . . 6  |-  ( y  =  v  ->  ( C  C_  X  <->  [_ v  / 
y ]_ C  C_  X
) )
3529, 32, 34cbvral 2836 . . . . 5  |-  ( A. y  e.  B  C  C_  X  <->  A. v  e.  B  [_ v  /  y ]_ C  C_  X )
36 csbeq1a 3165 . . . . . . 7  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
3736sseq1d 3281 . . . . . 6  |-  ( x  =  u  ->  ( [_ v  /  y ]_ C  C_  X  <->  [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
3820, 37raleqbidv 2824 . . . . 5  |-  ( x  =  u  ->  ( A. v  e.  B  [_ v  /  y ]_ C  C_  X  <->  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
3935, 38syl5bb 248 . . . 4  |-  ( x  =  u  ->  ( A. y  e.  B  C  C_  X  <->  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  / 
y ]_ C  C_  X
) )
4024, 28, 39cbvral 2836 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  <->  A. u  e.  A  A. v  e.  [_  u  /  x ]_ B [_ u  /  x ]_ [_ v  /  y ]_ C  C_  X )
4114, 23, 403bitr4ri 269 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  <->  A. z  e.  U_  x  e.  A  ( { x }  X.  B ) [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  C_  X )
42 df-ov 5948 . . 3  |-  ( E F G )  =  ( F `  <. E ,  G >. )
4342sseq1i 3278 . 2  |-  ( ( E F G ) 
C_  X  <->  ( F `  <. E ,  G >. )  C_  X )
444, 41, 433imtr4i 257 1  |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  ->  ( E F G )  C_  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642   A.wral 2619   [_csb 3157    C_ wss 3228   {csn 3716   <.cop 3719   U_ciun 3986    e. cmpt 4158    X. cxp 4769   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1stc1st 6207   2ndc2nd 6208
This theorem is referenced by:  relmpt2opab  6288  relxpchom  14054  reldv  19324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210
  Copyright terms: Public domain W3C validator