MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Unicode version

Theorem ovolficcss 18845
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )

Proof of Theorem ovolficcss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 5196 . . 3  |-  ran  ( [,]  o.  F )  =  ( [,] " ran  F )
2 inss2 3403 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
3 ffvelrn 5679 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
42, 3sseldi 3191 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  ( RR  X.  RR ) )
5 1st2nd2 6175 . . . . . . . . . . 11  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( F `
 y )  = 
<. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
64, 5syl 15 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  =  <. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
76fveq2d 5545 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( [,] `  <. ( 1st `  ( F `
 y ) ) ,  ( 2nd `  ( F `  y )
) >. ) )
8 df-ov 5877 . . . . . . . . 9  |-  ( ( 1st `  ( F `
 y ) ) [,] ( 2nd `  ( F `  y )
) )  =  ( [,] `  <. ( 1st `  ( F `  y ) ) ,  ( 2nd `  ( F `  y )
) >. )
97, 8syl6eqr 2346 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) ) )
10 xp1st 6165 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 1st `  ( F `  y
) )  e.  RR )
114, 10syl 15 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 1st `  ( F `  y ) )  e.  RR )
12 xp2nd 6166 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( F `  y
) )  e.  RR )
134, 12syl 15 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 2nd `  ( F `  y ) )  e.  RR )
14 iccssre 10747 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  y )
)  e.  RR  /\  ( 2nd `  ( F `
 y ) )  e.  RR )  -> 
( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
1511, 13, 14syl2anc 642 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  (
( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
169, 15eqsstrd 3225 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  C_  RR )
17 reex 8844 . . . . . . . 8  |-  RR  e.  _V
1817elpw2 4191 . . . . . . 7  |-  ( ( [,] `  ( F `
 y ) )  e.  ~P RR  <->  ( [,] `  ( F `  y
) )  C_  RR )
1916, 18sylibr 203 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  e. 
~P RR )
2019ralrimiva 2639 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. y  e.  NN  ( [,] `  ( F `  y )
)  e.  ~P RR )
21 ffn 5405 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  NN )
22 fveq2 5541 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  ( [,] `  x )  =  ( [,] `  ( F `  y )
) )
2322eleq1d 2362 . . . . . . 7  |-  ( x  =  ( F `  y )  ->  (
( [,] `  x
)  e.  ~P RR  <->  ( [,] `  ( F `
 y ) )  e.  ~P RR ) )
2423ralrn 5684 . . . . . 6  |-  ( F  Fn  NN  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2521, 24syl 15 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2620, 25mpbird 223 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. x  e.  ran  F ( [,] `  x )  e.  ~P RR )
27 iccf 10758 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
28 ffun 5407 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
2927, 28ax-mp 8 . . . . 5  |-  Fun  [,]
30 frn 5411 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
31 ressxr 8892 . . . . . . . . 9  |-  RR  C_  RR*
32 xpss12 4808 . . . . . . . . 9  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
3331, 31, 32mp2an 653 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
342, 33sstri 3201 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
3527fdmi 5410 . . . . . . 7  |-  dom  [,]  =  ( RR*  X.  RR* )
3634, 35sseqtr4i 3224 . . . . . 6  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  dom  [,]
3730, 36syl6ss 3204 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  dom  [,] )
38 funimass4 5589 . . . . 5  |-  ( ( Fun  [,]  /\  ran  F  C_ 
dom  [,] )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
3929, 37, 38sylancr 644 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
4026, 39mpbird 223 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( [,] " ran  F ) 
C_  ~P RR )
411, 40syl5eqss 3235 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  ( [,]  o.  F ) 
C_  ~P RR )
42 sspwuni 4003 . 2  |-  ( ran  ( [,]  o.  F
)  C_  ~P RR  <->  U.
ran  ( [,]  o.  F )  C_  RR )
4341, 42sylib 188 1  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   <.cop 3656   U.cuni 3843    X. cxp 4703   dom cdm 4705   ran crn 4706   "cima 4708    o. ccom 4709   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   RRcr 8752   RR*cxr 8882    <_ cle 8884   NNcn 9762   [,]cicc 10675
This theorem is referenced by:  ovollb2lem  18863  ovollb2  18864  uniiccdif  18949  uniiccvol  18951  uniioombllem3  18956  uniioombllem4  18957  uniioombllem5  18958  uniiccmbl  18961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-icc 10679
  Copyright terms: Public domain W3C validator