MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Unicode version

Theorem ovolicc2 19423
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1  |-  ( ph  ->  A  e.  RR )
ovolicc.2  |-  ( ph  ->  B  e.  RR )
ovolicc.3  |-  ( ph  ->  A  <_  B )
ovolicc2.m  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A [,] B
)  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolicc2  |-  ( ph  ->  ( B  -  A
)  <_  ( vol * `
 ( A [,] B ) ) )
Distinct variable groups:    y, f, A    B, f, y    y, M    ph, f, y
Allowed substitution hint:    M( f)

Proof of Theorem ovolicc2
Dummy variables  g 
k  t  u  v  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A [,] B
)  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
21elovolm 19376 . . . . 5  |-  ( z  e.  M  <->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A [,] B )  C_  U.
ran  ( (,)  o.  f )  /\  z  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
3 ioof 11007 . . . . . . . . . . . . . . . . . 18  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
4 ffn 5594 . . . . . . . . . . . . . . . . . 18  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
53, 4ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  (,)  Fn  ( RR*  X.  RR* )
6 dffn3 5601 . . . . . . . . . . . . . . . . 17  |-  ( (,) 
Fn  ( RR*  X.  RR* ) 
<->  (,) : ( RR*  X. 
RR* ) --> ran  (,) )
75, 6mpbi 201 . . . . . . . . . . . . . . . 16  |-  (,) :
( RR*  X.  RR* ) --> ran  (,)
8 simpr 449 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
9 reex 9086 . . . . . . . . . . . . . . . . . . . . 21  |-  RR  e.  _V
109, 9xpex 4993 . . . . . . . . . . . . . . . . . . . 20  |-  ( RR 
X.  RR )  e. 
_V
1110inex2 4348 . . . . . . . . . . . . . . . . . . 19  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
12 nnex 10011 . . . . . . . . . . . . . . . . . . 19  |-  NN  e.  _V
1311, 12elmap 7045 . . . . . . . . . . . . . . . . . 18  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
148, 13sylib 190 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15 inss2 3564 . . . . . . . . . . . . . . . . . 18  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
16 ressxr 9134 . . . . . . . . . . . . . . . . . . 19  |-  RR  C_  RR*
17 xpss12 4984 . . . . . . . . . . . . . . . . . . 19  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
1816, 16, 17mp2an 655 . . . . . . . . . . . . . . . . . 18  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
1915, 18sstri 3359 . . . . . . . . . . . . . . . . 17  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
20 fss 5602 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  -> 
f : NN --> ( RR*  X. 
RR* ) )
2114, 19, 20sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  f : NN --> ( RR*  X.  RR* ) )
22 fco 5603 . . . . . . . . . . . . . . . 16  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ran  (,)  /\  f : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  f
) : NN --> ran  (,) )
237, 21, 22sylancr 646 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  ( (,)  o.  f ) : NN --> ran  (,) )
2423adantrr 699 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ( (,)  o.  f ) : NN --> ran  (,) )
25 frn 5600 . . . . . . . . . . . . . 14  |-  ( ( (,)  o.  f ) : NN --> ran  (,)  ->  ran  ( (,)  o.  f )  C_  ran  (,) )
2624, 25syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ran  ( (,)  o.  f ) 
C_  ran  (,) )
27 retopbas 18799 . . . . . . . . . . . . . 14  |-  ran  (,)  e. 
TopBases
28 bastg 17036 . . . . . . . . . . . . . 14  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
2927, 28ax-mp 5 . . . . . . . . . . . . 13  |-  ran  (,)  C_  ( topGen `  ran  (,) )
3026, 29syl6ss 3362 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ran  ( (,)  o.  f ) 
C_  ( topGen `  ran  (,) ) )
31 fvex 5745 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  e.  _V
3231elpw2 4367 . . . . . . . . . . . 12  |-  ( ran  ( (,)  o.  f
)  e.  ~P ( topGen `
 ran  (,) )  <->  ran  ( (,)  o.  f
)  C_  ( topGen ` 
ran  (,) ) )
3330, 32sylibr 205 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ran  ( (,)  o.  f )  e.  ~P ( topGen ` 
ran  (,) ) )
34 ovolicc.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  RR )
35 ovolicc.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
36 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
37 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  =  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )
3836, 37icccmp 18861 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Comp )
3934, 35, 38syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Comp )
40 retop 18800 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  e.  Top
41 iccssre 10997 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
4234, 35, 41syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
43 uniretop 18801 . . . . . . . . . . . . . . 15  |-  RR  =  U. ( topGen `  ran  (,) )
4443cmpsub 17468 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR )  ->  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  e.  Comp  <->  A. u  e.  ~P  ( topGen `  ran  (,) )
( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( A [,] B )  C_  U. v
) ) )
4540, 42, 44sylancr 646 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  e. 
Comp 
<-> 
A. u  e.  ~P  ( topGen `  ran  (,) )
( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( A [,] B )  C_  U. v
) ) )
4639, 45mpbid 203 . . . . . . . . . . . 12  |-  ( ph  ->  A. u  e.  ~P  ( topGen `  ran  (,) )
( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( A [,] B )  C_  U. v
) )
4746adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  A. u  e.  ~P  ( topGen `  ran  (,) ) ( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. v ) )
48 simprr 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ( A [,] B )  C_  U.
ran  ( (,)  o.  f ) )
49 unieq 4026 . . . . . . . . . . . . . 14  |-  ( u  =  ran  ( (,) 
o.  f )  ->  U. u  =  U. ran  ( (,)  o.  f
) )
5049sseq2d 3378 . . . . . . . . . . . . 13  |-  ( u  =  ran  ( (,) 
o.  f )  -> 
( ( A [,] B )  C_  U. u  <->  ( A [,] B ) 
C_  U. ran  ( (,) 
o.  f ) ) )
51 pweq 3804 . . . . . . . . . . . . . . 15  |-  ( u  =  ran  ( (,) 
o.  f )  ->  ~P u  =  ~P ran  ( (,)  o.  f
) )
5251ineq1d 3543 . . . . . . . . . . . . . 14  |-  ( u  =  ran  ( (,) 
o.  f )  -> 
( ~P u  i^i 
Fin )  =  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin ) )
5352rexeqdv 2913 . . . . . . . . . . . . 13  |-  ( u  =  ran  ( (,) 
o.  f )  -> 
( E. v  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. v  <->  E. v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin ) ( A [,] B )  C_  U. v ) )
5450, 53imbi12d 313 . . . . . . . . . . . 12  |-  ( u  =  ran  ( (,) 
o.  f )  -> 
( ( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. v )  <->  ( ( A [,] B )  C_  U.
ran  ( (,)  o.  f )  ->  E. v  e.  ( ~P ran  ( (,)  o.  f )  i^i 
Fin ) ( A [,] B )  C_  U. v ) ) )
5554rspcv 3050 . . . . . . . . . . 11  |-  ( ran  ( (,)  o.  f
)  e.  ~P ( topGen `
 ran  (,) )  ->  ( A. u  e. 
~P  ( topGen `  ran  (,) ) ( ( A [,] B )  C_  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. v )  ->  (
( A [,] B
)  C_  U. ran  ( (,)  o.  f )  ->  E. v  e.  ( ~P ran  ( (,)  o.  f )  i^i  Fin ) ( A [,] B )  C_  U. v
) ) )
5633, 47, 48, 55syl3c 60 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  E. v  e.  ( ~P ran  ( (,)  o.  f )  i^i 
Fin ) ( A [,] B )  C_  U. v )
57 simprl 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  v  e.  ( ~P ran  ( (,)  o.  f )  i^i 
Fin ) )
58 elin 3532 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ~P ran  ( (,)  o.  f )  i^i  Fin )  <->  ( v  e.  ~P ran  ( (,) 
o.  f )  /\  v  e.  Fin )
)
5957, 58sylib 190 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  (
v  e.  ~P ran  ( (,)  o.  f )  /\  v  e.  Fin ) )
6059simprd 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  v  e.  Fin )
6159simpld 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  v  e.  ~P ran  ( (,) 
o.  f ) )
6261elpwid 3810 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  v  C_ 
ran  ( (,)  o.  f ) )
6362sseld 3349 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  (
t  e.  v  -> 
t  e.  ran  ( (,)  o.  f ) ) )
64 ffn 5594 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (,)  o.  f ) : NN --> ran  (,)  ->  ( (,)  o.  f
)  Fn  NN )
6523, 64syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  ( (,)  o.  f )  Fn  NN )
6665adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  ( (,)  o.  f )  Fn  NN )
67 fvelrnb 5777 . . . . . . . . . . . . . . . . 17  |-  ( ( (,)  o.  f )  Fn  NN  ->  (
t  e.  ran  ( (,)  o.  f )  <->  E. k  e.  NN  ( ( (,) 
o.  f ) `  k )  =  t ) )
6866, 67syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  (
t  e.  ran  ( (,)  o.  f )  <->  E. k  e.  NN  ( ( (,) 
o.  f ) `  k )  =  t ) )
6963, 68sylibd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  (
t  e.  v  ->  E. k  e.  NN  ( ( (,)  o.  f ) `  k
)  =  t ) )
7069ralrimiv 2790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  A. t  e.  v  E. k  e.  NN  ( ( (,) 
o.  f ) `  k )  =  t )
71 fveq2 5731 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( g `  t )  ->  (
( (,)  o.  f
) `  k )  =  ( ( (,) 
o.  f ) `  ( g `  t
) ) )
7271eqeq1d 2446 . . . . . . . . . . . . . . 15  |-  ( k  =  ( g `  t )  ->  (
( ( (,)  o.  f ) `  k
)  =  t  <->  ( ( (,)  o.  f ) `  ( g `  t
) )  =  t ) )
7372ac6sfi 7354 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Fin  /\  A. t  e.  v  E. k  e.  NN  (
( (,)  o.  f
) `  k )  =  t )  ->  E. g ( g : v --> NN  /\  A. t  e.  v  (
( (,)  o.  f
) `  ( g `  t ) )  =  t ) )
7460, 70, 73syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  E. g
( g : v --> NN  /\  A. t  e.  v  ( ( (,)  o.  f ) `  ( g `  t
) )  =  t ) )
7534ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  A  e.  RR )
7635ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  B  e.  RR )
77 ovolicc.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  <_  B )
7877ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  A  <_  B )
79 eqid 2438 . . . . . . . . . . . . . . . 16  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
8014adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
81 simprll 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  v  e.  ( ~P ran  ( (,)  o.  f )  i^i 
Fin ) )
82 simprlr 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  ( A [,] B )  C_  U. v )
83 simprrl 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  g : v --> NN )
84 simprrr 743 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  A. t  e.  v  ( ( (,)  o.  f ) `  ( g `  t
) )  =  t )
85 fveq2 5731 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  x  ->  (
g `  t )  =  ( g `  x ) )
8685fveq2d 5735 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  (
( (,)  o.  f
) `  ( g `  t ) )  =  ( ( (,)  o.  f ) `  (
g `  x )
) )
87 id 21 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  x  ->  t  =  x )
8886, 87eqeq12d 2452 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  x  ->  (
( ( (,)  o.  f ) `  (
g `  t )
)  =  t  <->  ( ( (,)  o.  f ) `  ( g `  x
) )  =  x ) )
8988rspccva 3053 . . . . . . . . . . . . . . . . 17  |-  ( ( A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t  /\  x  e.  v )  ->  ( ( (,)  o.  f ) `  (
g `  x )
)  =  x )
9084, 89sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  /\  x  e.  v )  ->  (
( (,)  o.  f
) `  ( g `  x ) )  =  x )
91 eqid 2438 . . . . . . . . . . . . . . . 16  |-  { u  e.  v  |  (
u  i^i  ( A [,] B ) )  =/=  (/) }  =  { u  e.  v  |  (
u  i^i  ( A [,] B ) )  =/=  (/) }
9275, 76, 78, 79, 80, 81, 82, 83, 90, 91ovolicc2lem5 19422 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
( v  e.  ( ~P ran  ( (,) 
o.  f )  i^i 
Fin )  /\  ( A [,] B )  C_  U. v )  /\  (
g : v --> NN 
/\  A. t  e.  v  ( ( (,)  o.  f ) `  (
g `  t )
)  =  t ) ) )  ->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
9392expr 600 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  (
( g : v --> NN  /\  A. t  e.  v  ( ( (,)  o.  f ) `  ( g `  t
) )  =  t )  ->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
9493exlimdv 1647 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  ( E. g ( g : v --> NN  /\  A. t  e.  v  (
( (,)  o.  f
) `  ( g `  t ) )  =  t )  ->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
9574, 94mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  (
v  e.  ( ~P
ran  ( (,)  o.  f )  i^i  Fin )  /\  ( A [,] B )  C_  U. v
) )  ->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
9695rexlimdvaa 2833 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  ( E. v  e.  ( ~P ran  ( (,)  o.  f )  i^i  Fin ) ( A [,] B )  C_  U. v  ->  ( B  -  A
)  <_  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
9796adantrr 699 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ( E. v  e.  ( ~P ran  ( (,)  o.  f )  i^i  Fin ) ( A [,] B )  C_  U. v  ->  ( B  -  A
)  <_  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) )
9856, 97mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )
99 breq2 4219 . . . . . . . . 9  |-  ( z  =  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( ( B  -  A )  <_  z  <->  ( B  -  A )  <_  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) )
10098, 99syl5ibrcom 215 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A [,] B )  C_  U. ran  ( (,)  o.  f ) ) )  ->  (
z  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( B  -  A
)  <_  z )
)
101100expr 600 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( A [,] B
)  C_  U. ran  ( (,)  o.  f )  -> 
( z  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  -> 
( B  -  A
)  <_  z )
) )
102101imp3a 422 . . . . . 6  |-  ( (
ph  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( ( A [,] B )  C_  U. ran  ( (,)  o.  f )  /\  z  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  ( B  -  A )  <_  z
) )
103102rexlimdva 2832 . . . . 5  |-  ( ph  ->  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A [,] B )  C_  U.
ran  ( (,)  o.  f )  /\  z  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  -> 
( B  -  A
)  <_  z )
)
1042, 103syl5bi 210 . . . 4  |-  ( ph  ->  ( z  e.  M  ->  ( B  -  A
)  <_  z )
)
105104ralrimiv 2790 . . 3  |-  ( ph  ->  A. z  e.  M  ( B  -  A
)  <_  z )
106 ssrab2 3430 . . . . 5  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( ( A [,] B )  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } 
C_  RR*
1071, 106eqsstri 3380 . . . 4  |-  M  C_  RR*
10835, 34resubcld 9470 . . . . 5  |-  ( ph  ->  ( B  -  A
)  e.  RR )
109108rexrd 9139 . . . 4  |-  ( ph  ->  ( B  -  A
)  e.  RR* )
110 infmxrgelb 10918 . . . 4  |-  ( ( M  C_  RR*  /\  ( B  -  A )  e.  RR* )  ->  (
( B  -  A
)  <_  sup ( M ,  RR* ,  `'  <  )  <->  A. z  e.  M  ( B  -  A
)  <_  z )
)
111107, 109, 110sylancr 646 . . 3  |-  ( ph  ->  ( ( B  -  A )  <_  sup ( M ,  RR* ,  `'  <  )  <->  A. z  e.  M  ( B  -  A
)  <_  z )
)
112105, 111mpbird 225 . 2  |-  ( ph  ->  ( B  -  A
)  <_  sup ( M ,  RR* ,  `'  <  ) )
1131ovolval 19375 . . 3  |-  ( ( A [,] B ) 
C_  RR  ->  ( vol
* `  ( A [,] B ) )  =  sup ( M ,  RR* ,  `'  <  )
)
11442, 113syl 16 . 2  |-  ( ph  ->  ( vol * `  ( A [,] B ) )  =  sup ( M ,  RR* ,  `'  <  ) )
115112, 114breqtrrd 4241 1  |-  ( ph  ->  ( B  -  A
)  <_  ( vol * `
 ( A [,] B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   U.cuni 4017   class class class wbr 4215    X. cxp 4879   `'ccnv 4880   ran crn 4882    o. ccom 4885    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084    ^m cmap 7021   Fincfn 7112   supcsup 7448   RRcr 8994   1c1 8996    + caddc 8998   RR*cxr 9124    < clt 9125    <_ cle 9126    - cmin 9296   NNcn 10005   (,)cioo 10921   [,]cicc 10924    seq cseq 11328   abscabs 12044   ↾t crest 13653   topGenctg 13670   Topctop 16963   TopBasesctb 16967   Compccmp 17454   vol *covol 19364
This theorem is referenced by:  ovolicc  19424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-rest 13655  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-cmp 17455  df-ovol 19366
  Copyright terms: Public domain W3C validator