MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem1 Structured version   Unicode version

Theorem ovoliunlem1 19403
Description: Lemma for ovoliun 19406. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t  |-  T  =  seq  1 (  +  ,  G )
ovoliun.g  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
ovoliun.a  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
ovoliun.v  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
ovoliun.r  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
ovoliun.b  |-  ( ph  ->  B  e.  RR+ )
ovoliun.s  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( F `  n ) ) )
ovoliun.u  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ovoliun.h  |-  H  =  ( k  e.  NN  |->  ( ( F `  ( 1st `  ( J `
 k ) ) ) `  ( 2nd `  ( J `  k
) ) ) )
ovoliun.j  |-  ( ph  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
ovoliun.f  |-  ( ph  ->  F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovoliun.x1  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  U.
ran  ( (,)  o.  ( F `  n ) ) )
ovoliun.x2  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( B  / 
( 2 ^ n
) ) ) )
ovoliun.k  |-  ( ph  ->  K  e.  NN )
ovoliun.l1  |-  ( ph  ->  L  e.  ZZ )
ovoliun.l2  |-  ( ph  ->  A. w  e.  ( 1 ... K ) ( 1st `  ( J `  w )
)  <_  L )
Assertion
Ref Expression
ovoliunlem1  |-  ( ph  ->  ( U `  K
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Distinct variable groups:    A, k    k, n, B    k, F, n    w, k, J, n   
n, K, w    k, L, n, w    n, H    ph, k, n    S, k   
k, G    T, k    n, G    T, n
Allowed substitution hints:    ph( w)    A( w, n)    B( w)    S( w, n)    T( w)    U( w, k, n)    F( w)    G( w)    H( w, k)    K( k)

Proof of Theorem ovoliunlem1
Dummy variables  j  m  x  y  z 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5731 . . . . . . . . 9  |-  ( j  =  ( J `  m )  ->  ( 1st `  j )  =  ( 1st `  ( J `  m )
) )
21fveq2d 5735 . . . . . . . 8  |-  ( j  =  ( J `  m )  ->  ( F `  ( 1st `  j ) )  =  ( F `  ( 1st `  ( J `  m ) ) ) )
3 fveq2 5731 . . . . . . . 8  |-  ( j  =  ( J `  m )  ->  ( 2nd `  j )  =  ( 2nd `  ( J `  m )
) )
42, 3fveq12d 5737 . . . . . . 7  |-  ( j  =  ( J `  m )  ->  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) )  =  ( ( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )
54fveq2d 5735 . . . . . 6  |-  ( j  =  ( J `  m )  ->  ( 2nd `  ( ( F `
 ( 1st `  j
) ) `  ( 2nd `  j ) ) )  =  ( 2nd `  ( ( F `  ( 1st `  ( J `
 m ) ) ) `  ( 2nd `  ( J `  m
) ) ) ) )
64fveq2d 5735 . . . . . 6  |-  ( j  =  ( J `  m )  ->  ( 1st `  ( ( F `
 ( 1st `  j
) ) `  ( 2nd `  j ) ) )  =  ( 1st `  ( ( F `  ( 1st `  ( J `
 m ) ) ) `  ( 2nd `  ( J `  m
) ) ) ) )
75, 6oveq12d 6102 . . . . 5  |-  ( j  =  ( J `  m )  ->  (
( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  =  ( ( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )  -  ( 1st `  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) ) ) ) )
8 fzfid 11317 . . . . 5  |-  ( ph  ->  ( 1 ... K
)  e.  Fin )
9 ovoliun.j . . . . . . 7  |-  ( ph  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
10 f1of1 5676 . . . . . . 7  |-  ( J : NN -1-1-onto-> ( NN  X.  NN )  ->  J : NN -1-1-> ( NN  X.  NN ) )
119, 10syl 16 . . . . . 6  |-  ( ph  ->  J : NN -1-1-> ( NN  X.  NN ) )
12 elfznn 11085 . . . . . . 7  |-  ( m  e.  ( 1 ... K )  ->  m  e.  NN )
1312ssriv 3354 . . . . . 6  |-  ( 1 ... K )  C_  NN
14 f1ores 5692 . . . . . 6  |-  ( ( J : NN -1-1-> ( NN  X.  NN )  /\  ( 1 ... K )  C_  NN )  ->  ( J  |`  ( 1 ... K
) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) )
1511, 13, 14sylancl 645 . . . . 5  |-  ( ph  ->  ( J  |`  (
1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " (
1 ... K ) ) )
16 fvres 5748 . . . . . 6  |-  ( m  e.  ( 1 ... K )  ->  (
( J  |`  (
1 ... K ) ) `
 m )  =  ( J `  m
) )
1716adantl 454 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( J  |`  (
1 ... K ) ) `
 m )  =  ( J `  m
) )
18 inss2 3564 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
19 ovoliun.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
2019adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  F : NN
--> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
21 imassrn 5219 . . . . . . . . . . . . . . 15  |-  ( J
" ( 1 ... K ) )  C_  ran  J
22 f1of 5677 . . . . . . . . . . . . . . . . 17  |-  ( J : NN -1-1-onto-> ( NN  X.  NN )  ->  J : NN --> ( NN  X.  NN ) )
239, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J : NN --> ( NN 
X.  NN ) )
24 frn 5600 . . . . . . . . . . . . . . . 16  |-  ( J : NN --> ( NN 
X.  NN )  ->  ran  J  C_  ( NN  X.  NN ) )
2523, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  J  C_  ( NN  X.  NN ) )
2621, 25syl5ss 3361 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( J " (
1 ... K ) ) 
C_  ( NN  X.  NN ) )
2726sselda 3350 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  j  e.  ( NN  X.  NN ) )
28 xp1st 6379 . . . . . . . . . . . . 13  |-  ( j  e.  ( NN  X.  NN )  ->  ( 1st `  j )  e.  NN )
2927, 28syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 1st `  j )  e.  NN )
3020, 29ffvelrnd 5874 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( F `  ( 1st `  j
) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
31 reex 9086 . . . . . . . . . . . . . 14  |-  RR  e.  _V
3231, 31xpex 4993 . . . . . . . . . . . . 13  |-  ( RR 
X.  RR )  e. 
_V
3332inex2 4348 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
34 nnex 10011 . . . . . . . . . . . 12  |-  NN  e.  _V
3533, 34elmap 7045 . . . . . . . . . . 11  |-  ( ( F `  ( 1st `  j ) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  ( F `  ( 1st `  j ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3630, 35sylib 190 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( F `  ( 1st `  j
) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
37 xp2nd 6380 . . . . . . . . . . 11  |-  ( j  e.  ( NN  X.  NN )  ->  ( 2nd `  j )  e.  NN )
3827, 37syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 2nd `  j )  e.  NN )
3936, 38ffvelrnd 5874 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
4018, 39sseldi 3348 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) )  e.  ( RR 
X.  RR ) )
41 xp2nd 6380 . . . . . . . 8  |-  ( ( ( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) )  e.  ( RR  X.  RR )  ->  ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  e.  RR )
4240, 41syl 16 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 2nd `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) )  e.  RR )
43 xp1st 6379 . . . . . . . 8  |-  ( ( ( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) )  e.  ( RR  X.  RR )  ->  ( 1st `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  e.  RR )
4440, 43syl 16 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) )  e.  RR )
4542, 44resubcld 9470 . . . . . 6  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( ( 2nd `  ( ( F `
 ( 1st `  j
) ) `  ( 2nd `  j ) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  e.  RR )
4645recnd 9119 . . . . 5  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( ( 2nd `  ( ( F `
 ( 1st `  j
) ) `  ( 2nd `  j ) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  e.  CC )
477, 8, 15, 17, 46fsumf1o 12522 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  = 
sum_ m  e.  (
1 ... K ) ( ( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )  -  ( 1st `  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) ) ) ) )
4819adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
4923ffvelrnda 5873 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  ( NN  X.  NN ) )
50 xp1st 6379 . . . . . . . . . . . 12  |-  ( ( J `  k )  e.  ( NN  X.  NN )  ->  ( 1st `  ( J `  k
) )  e.  NN )
5149, 50syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( J `  k
) )  e.  NN )
5248, 51ffvelrnd 5874 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( 1st `  ( J `  k )
) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
5333, 34elmap 7045 . . . . . . . . . 10  |-  ( ( F `  ( 1st `  ( J `  k
) ) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  ( F `  ( 1st `  ( J `  k ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5452, 53sylib 190 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( 1st `  ( J `  k )
) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
55 xp2nd 6380 . . . . . . . . . 10  |-  ( ( J `  k )  e.  ( NN  X.  NN )  ->  ( 2nd `  ( J `  k
) )  e.  NN )
5649, 55syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2nd `  ( J `  k
) )  e.  NN )
5754, 56ffvelrnd 5874 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( 1st `  ( J `  k
) ) ) `  ( 2nd `  ( J `
 k ) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
58 ovoliun.h . . . . . . . 8  |-  H  =  ( k  e.  NN  |->  ( ( F `  ( 1st `  ( J `
 k ) ) ) `  ( 2nd `  ( J `  k
) ) ) )
5957, 58fmptd 5896 . . . . . . 7  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
60 eqid 2438 . . . . . . . 8  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
6160ovolfsval 19372 . . . . . . 7  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  (
( ( abs  o.  -  )  o.  H
) `  m )  =  ( ( 2nd `  ( H `  m
) )  -  ( 1st `  ( H `  m ) ) ) )
6259, 12, 61syl2an 465 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  m )  =  ( ( 2nd `  ( H `  m
) )  -  ( 1st `  ( H `  m ) ) ) )
6312adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  m  e.  NN )
64 fveq2 5731 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( J `  k )  =  ( J `  m ) )
6564fveq2d 5735 . . . . . . . . . . . 12  |-  ( k  =  m  ->  ( 1st `  ( J `  k ) )  =  ( 1st `  ( J `  m )
) )
6665fveq2d 5735 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( F `  ( 1st `  ( J `  k
) ) )  =  ( F `  ( 1st `  ( J `  m ) ) ) )
6764fveq2d 5735 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( 2nd `  ( J `  k ) )  =  ( 2nd `  ( J `  m )
) )
6866, 67fveq12d 5737 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( F `  ( 1st `  ( J `  k ) ) ) `
 ( 2nd `  ( J `  k )
) )  =  ( ( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )
69 fvex 5745 . . . . . . . . . 10  |-  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) )  e.  _V
7068, 58, 69fvmpt 5809 . . . . . . . . 9  |-  ( m  e.  NN  ->  ( H `  m )  =  ( ( F `
 ( 1st `  ( J `  m )
) ) `  ( 2nd `  ( J `  m ) ) ) )
7163, 70syl 16 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( H `  m )  =  ( ( F `
 ( 1st `  ( J `  m )
) ) `  ( 2nd `  ( J `  m ) ) ) )
7271fveq2d 5735 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( 2nd `  ( H `  m ) )  =  ( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) ) )
7371fveq2d 5735 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( 1st `  ( H `  m ) )  =  ( 1st `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) ) )
7472, 73oveq12d 6102 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( 2nd `  ( H `  m )
)  -  ( 1st `  ( H `  m
) ) )  =  ( ( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )  -  ( 1st `  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) ) ) ) )
7562, 74eqtrd 2470 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  m )  =  ( ( 2nd `  ( ( F `  ( 1st `  ( J `
 m ) ) ) `  ( 2nd `  ( J `  m
) ) ) )  -  ( 1st `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) ) ) )
76 ovoliun.k . . . . . 6  |-  ( ph  ->  K  e.  NN )
77 nnuz 10526 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
7876, 77syl6eleq 2528 . . . . 5  |-  ( ph  ->  K  e.  ( ZZ>= ` 
1 ) )
79 ffvelrn 5871 . . . . . . . . . . 11  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  ( H `  m )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
8059, 12, 79syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( H `  m )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
8118, 80sseldi 3348 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( H `  m )  e.  ( RR  X.  RR ) )
82 xp2nd 6380 . . . . . . . . 9  |-  ( ( H `  m )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( H `  m
) )  e.  RR )
8381, 82syl 16 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( 2nd `  ( H `  m ) )  e.  RR )
84 xp1st 6379 . . . . . . . . 9  |-  ( ( H `  m )  e.  ( RR  X.  RR )  ->  ( 1st `  ( H `  m
) )  e.  RR )
8581, 84syl 16 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  ( 1st `  ( H `  m ) )  e.  RR )
8683, 85resubcld 9470 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( 2nd `  ( H `  m )
)  -  ( 1st `  ( H `  m
) ) )  e.  RR )
8786recnd 9119 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( 2nd `  ( H `  m )
)  -  ( 1st `  ( H `  m
) ) )  e.  CC )
8874, 87eqeltrrd 2513 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... K
) )  ->  (
( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )  -  ( 1st `  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) ) ) )  e.  CC )
8975, 78, 88fsumser 12529 . . . 4  |-  ( ph  -> 
sum_ m  e.  (
1 ... K ) ( ( 2nd `  (
( F `  ( 1st `  ( J `  m ) ) ) `
 ( 2nd `  ( J `  m )
) ) )  -  ( 1st `  ( ( F `  ( 1st `  ( J `  m
) ) ) `  ( 2nd `  ( J `
 m ) ) ) ) )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  H ) ) `  K ) )
9047, 89eqtrd 2470 . . 3  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  H ) ) `  K ) )
91 ovoliun.u . . . 4  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
9291fveq1i 5732 . . 3  |-  ( U `
 K )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  H ) ) `  K )
9390, 92syl6eqr 2488 . 2  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  =  ( U `  K
) )
94 f1oeng 7129 . . . . . . 7  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( J  |`  ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " (
1 ... K ) ) )  ->  ( 1 ... K )  ~~  ( J " ( 1 ... K ) ) )
958, 15, 94syl2anc 644 . . . . . 6  |-  ( ph  ->  ( 1 ... K
)  ~~  ( J " ( 1 ... K
) ) )
9695ensymd 7161 . . . . 5  |-  ( ph  ->  ( J " (
1 ... K ) ) 
~~  ( 1 ... K ) )
97 enfii 7329 . . . . 5  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( J " ( 1 ... K ) ) 
~~  ( 1 ... K ) )  -> 
( J " (
1 ... K ) )  e.  Fin )
988, 96, 97syl2anc 644 . . . 4  |-  ( ph  ->  ( J " (
1 ... K ) )  e.  Fin )
9998, 45fsumrecl 12533 . . 3  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  e.  RR )
100 fzfid 11317 . . . . 5  |-  ( ph  ->  ( 1 ... L
)  e.  Fin )
101 elfznn 11085 . . . . . 6  |-  ( n  e.  ( 1 ... L )  ->  n  e.  NN )
102 ovoliun.v . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
103101, 102sylan2 462 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( vol * `  A )  e.  RR )
104100, 103fsumrecl 12533 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( vol * `  A
)  e.  RR )
105 ovoliun.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
106105rpred 10653 . . . . . 6  |-  ( ph  ->  B  e.  RR )
107 2nn 10138 . . . . . . . 8  |-  2  e.  NN
108 nnnn0 10233 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN0 )
109 nnexpcl 11399 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
110107, 108, 109sylancr 646 . . . . . . 7  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
111101, 110syl 16 . . . . . 6  |-  ( n  e.  ( 1 ... L )  ->  (
2 ^ n )  e.  NN )
112 nndivre 10040 . . . . . 6  |-  ( ( B  e.  RR  /\  ( 2 ^ n
)  e.  NN )  ->  ( B  / 
( 2 ^ n
) )  e.  RR )
113106, 111, 112syl2an 465 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( B  /  ( 2 ^ n ) )  e.  RR )
114100, 113fsumrecl 12533 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( B  /  ( 2 ^ n ) )  e.  RR )
115104, 114readdcld 9120 . . 3  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... L ) ( vol * `  A )  +  sum_ n  e.  ( 1 ... L ) ( B  /  ( 2 ^ n ) ) )  e.  RR )
116 ovoliun.r . . . 4  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
117116, 106readdcld 9120 . . 3  |-  ( ph  ->  ( sup ( ran 
T ,  RR* ,  <  )  +  B )  e.  RR )
118 relxp 4986 . . . . . . . . . . . . . . 15  |-  Rel  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )
119 relres 5177 . . . . . . . . . . . . . . 15  |-  Rel  (
( J " (
1 ... K ) )  |`  { n } )
120 opelxp 4911 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  y >.  e.  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  <-> 
( x  e.  {
n }  /\  y  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )
121 vex 2961 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
122121opelres 5154 . . . . . . . . . . . . . . . . 17  |-  ( <.
x ,  y >.  e.  ( ( J "
( 1 ... K
) )  |`  { n } )  <->  ( <. x ,  y >.  e.  ( J " ( 1 ... K ) )  /\  x  e.  {
n } ) )
123 ancom 439 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  { n }  /\  <. x ,  y
>.  e.  ( J "
( 1 ... K
) ) )  <->  ( <. x ,  y >.  e.  ( J " ( 1 ... K ) )  /\  x  e.  {
n } ) )
124 elsni 3840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { n }  ->  x  =  n )
125124opeq1d 3992 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  { n }  -> 
<. x ,  y >.  =  <. n ,  y
>. )
126125eleq1d 2504 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { n }  ->  ( <. x ,  y
>.  e.  ( J "
( 1 ... K
) )  <->  <. n ,  y >.  e.  ( J " ( 1 ... K ) ) ) )
127 vex 2961 . . . . . . . . . . . . . . . . . . . 20  |-  n  e. 
_V
128127, 121elimasn 5232 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ( J
" ( 1 ... K ) ) " { n } )  <->  <. n ,  y >.  e.  ( J " (
1 ... K ) ) )
129126, 128syl6bbr 256 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  { n }  ->  ( <. x ,  y
>.  e.  ( J "
( 1 ... K
) )  <->  y  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )
130129pm5.32i 620 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  { n }  /\  <. x ,  y
>.  e.  ( J "
( 1 ... K
) ) )  <->  ( x  e.  { n }  /\  y  e.  ( ( J " ( 1 ... K ) ) " { n } ) ) )
131122, 123, 1303bitr2ri 267 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  { n }  /\  y  e.  ( ( J " (
1 ... K ) )
" { n }
) )  <->  <. x ,  y >.  e.  (
( J " (
1 ... K ) )  |`  { n } ) )
132120, 131bitri 242 . . . . . . . . . . . . . . 15  |-  ( <.
x ,  y >.  e.  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  <->  <. x ,  y >.  e.  ( ( J "
( 1 ... K
) )  |`  { n } ) )
133118, 119, 132eqrelriiv 4973 . . . . . . . . . . . . . 14  |-  ( { n }  X.  (
( J " (
1 ... K ) )
" { n }
) )  =  ( ( J " (
1 ... K ) )  |`  { n } )
134 df-res 4893 . . . . . . . . . . . . . 14  |-  ( ( J " ( 1 ... K ) )  |`  { n } )  =  ( ( J
" ( 1 ... K ) )  i^i  ( { n }  X.  _V ) )
135133, 134eqtri 2458 . . . . . . . . . . . . 13  |-  ( { n }  X.  (
( J " (
1 ... K ) )
" { n }
) )  =  ( ( J " (
1 ... K ) )  i^i  ( { n }  X.  _V ) )
136135a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  =  ( ( J
" ( 1 ... K ) )  i^i  ( { n }  X.  _V ) ) )
137136iuneq2dv 4116 . . . . . . . . . . 11  |-  ( ph  ->  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  =  U_ n  e.  ( 1 ... L
) ( ( J
" ( 1 ... K ) )  i^i  ( { n }  X.  _V ) ) )
138 iunin2 4157 . . . . . . . . . . 11  |-  U_ n  e.  ( 1 ... L
) ( ( J
" ( 1 ... K ) )  i^i  ( { n }  X.  _V ) )  =  ( ( J "
( 1 ... K
) )  i^i  U_ n  e.  ( 1 ... L ) ( { n }  X.  _V ) )
139137, 138syl6eq 2486 . . . . . . . . . 10  |-  ( ph  ->  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  =  ( ( J
" ( 1 ... K ) )  i^i  U_ n  e.  (
1 ... L ) ( { n }  X.  _V ) ) )
140 relxp 4986 . . . . . . . . . . . . . 14  |-  Rel  ( NN  X.  NN )
141 relss 4966 . . . . . . . . . . . . . 14  |-  ( ( J " ( 1 ... K ) ) 
C_  ( NN  X.  NN )  ->  ( Rel  ( NN  X.  NN )  ->  Rel  ( J " ( 1 ... K
) ) ) )
14226, 140, 141ee10 1386 . . . . . . . . . . . . 13  |-  ( ph  ->  Rel  ( J "
( 1 ... K
) ) )
143 ovoliun.l2 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. w  e.  ( 1 ... K ) ( 1st `  ( J `  w )
)  <_  L )
144 ffn 5594 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J : NN --> ( NN 
X.  NN )  ->  J  Fn  NN )
14523, 144syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  Fn  NN )
146 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  ( J `  w )  ->  ( 1st `  j )  =  ( 1st `  ( J `  w )
) )
147146breq1d 4225 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  ( J `  w )  ->  (
( 1st `  j
)  <_  L  <->  ( 1st `  ( J `  w
) )  <_  L
) )
148147ralima 5981 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  Fn  NN  /\  ( 1 ... K
)  C_  NN )  ->  ( A. j  e.  ( J " (
1 ... K ) ) ( 1st `  j
)  <_  L  <->  A. w  e.  ( 1 ... K
) ( 1st `  ( J `  w )
)  <_  L )
)
149145, 13, 148sylancl 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A. j  e.  ( J " (
1 ... K ) ) ( 1st `  j
)  <_  L  <->  A. w  e.  ( 1 ... K
) ( 1st `  ( J `  w )
)  <_  L )
)
150143, 149mpbird 225 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. j  e.  ( J " ( 1 ... K ) ) ( 1st `  j
)  <_  L )
151150r19.21bi 2806 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 1st `  j )  <_  L
)
15229, 77syl6eleq 2528 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 1st `  j )  e.  (
ZZ>= `  1 ) )
153 ovoliun.l1 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  L  e.  ZZ )
154153adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  L  e.  ZZ )
155 elfz5 11056 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  j
)  e.  ( ZZ>= ` 
1 )  /\  L  e.  ZZ )  ->  (
( 1st `  j
)  e.  ( 1 ... L )  <->  ( 1st `  j )  <_  L
) )
156152, 154, 155syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( ( 1st `  j )  e.  ( 1 ... L
)  <->  ( 1st `  j
)  <_  L )
)
157151, 156mpbird 225 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( J " ( 1 ... K ) ) )  ->  ( 1st `  j )  e.  ( 1 ... L ) )
158157ralrimiva 2791 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  ( J " ( 1 ... K ) ) ( 1st `  j
)  e.  ( 1 ... L ) )
159 vex 2961 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
160159, 121op1std 6360 . . . . . . . . . . . . . . . . 17  |-  ( j  =  <. x ,  y
>.  ->  ( 1st `  j
)  =  x )
161160eleq1d 2504 . . . . . . . . . . . . . . . 16  |-  ( j  =  <. x ,  y
>.  ->  ( ( 1st `  j )  e.  ( 1 ... L )  <-> 
x  e.  ( 1 ... L ) ) )
162161rspccv 3051 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  ( J " ( 1 ... K
) ) ( 1st `  j )  e.  ( 1 ... L )  ->  ( <. x ,  y >.  e.  ( J " ( 1 ... K ) )  ->  x  e.  ( 1 ... L ) ) )
163158, 162syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( J "
( 1 ... K
) )  ->  x  e.  ( 1 ... L
) ) )
164 opelxp 4911 . . . . . . . . . . . . . . 15  |-  ( <.
x ,  y >.  e.  ( U_ n  e.  ( 1 ... L
) { n }  X.  _V )  <->  ( x  e.  U_ n  e.  ( 1 ... L ) { n }  /\  y  e.  _V )
)
165121biantru 493 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ n  e.  ( 1 ... L
) { n }  <->  ( x  e.  U_ n  e.  ( 1 ... L
) { n }  /\  y  e.  _V ) )
166 iunid 4148 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  ( 1 ... L
) { n }  =  ( 1 ... L )
167166eleq2i 2502 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ n  e.  ( 1 ... L
) { n }  <->  x  e.  ( 1 ... L ) )
168164, 165, 1673bitr2i 266 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  e.  ( U_ n  e.  ( 1 ... L
) { n }  X.  _V )  <->  x  e.  ( 1 ... L
) )
169163, 168syl6ibr 220 . . . . . . . . . . . . 13  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( J "
( 1 ... K
) )  ->  <. x ,  y >.  e.  (
U_ n  e.  ( 1 ... L ) { n }  X.  _V ) ) )
170142, 169relssdv 4971 . . . . . . . . . . . 12  |-  ( ph  ->  ( J " (
1 ... K ) ) 
C_  ( U_ n  e.  ( 1 ... L
) { n }  X.  _V ) )
171 xpiundir 4936 . . . . . . . . . . . 12  |-  ( U_ n  e.  ( 1 ... L ) { n }  X.  _V )  =  U_ n  e.  ( 1 ... L
) ( { n }  X.  _V )
172170, 171syl6sseq 3396 . . . . . . . . . . 11  |-  ( ph  ->  ( J " (
1 ... K ) ) 
C_  U_ n  e.  ( 1 ... L ) ( { n }  X.  _V ) )
173 df-ss 3336 . . . . . . . . . . 11  |-  ( ( J " ( 1 ... K ) ) 
C_  U_ n  e.  ( 1 ... L ) ( { n }  X.  _V )  <->  ( ( J " ( 1 ... K ) )  i^i  U_ n  e.  (
1 ... L ) ( { n }  X.  _V ) )  =  ( J " ( 1 ... K ) ) )
174172, 173sylib 190 . . . . . . . . . 10  |-  ( ph  ->  ( ( J "
( 1 ... K
) )  i^i  U_ n  e.  ( 1 ... L ) ( { n }  X.  _V ) )  =  ( J " ( 1 ... K ) ) )
175139, 174eqtrd 2470 . . . . . . . . 9  |-  ( ph  ->  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  =  ( J "
( 1 ... K
) ) )
176175, 98eqeltrd 2512 . . . . . . . 8  |-  ( ph  ->  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  e.  Fin )
177 ssiun2 4136 . . . . . . . 8  |-  ( n  e.  ( 1 ... L )  ->  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) 
C_  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )
178 ssfi 7332 . . . . . . . 8  |-  ( (
U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  e.  Fin  /\  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) 
C_  U_ n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( {
n }  X.  (
( J " (
1 ... K ) )
" { n }
) )  e.  Fin )
179176, 177, 178syl2an 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  e.  Fin )
180 2ndconst 6439 . . . . . . . . . 10  |-  ( n  e.  _V  ->  ( 2nd  |`  ( { n }  X.  ( ( J
" ( 1 ... K ) ) " { n } ) ) ) : ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) -1-1-onto-> ( ( J " (
1 ... K ) )
" { n }
) )
181127, 180ax-mp 5 . . . . . . . . 9  |-  ( 2nd  |`  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) ) : ( { n }  X.  (
( J " (
1 ... K ) )
" { n }
) ) -1-1-onto-> ( ( J "
( 1 ... K
) ) " {
n } )
182 f1oeng 7129 . . . . . . . . 9  |-  ( ( ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  e.  Fin  /\  ( 2nd  |`  ( { n }  X.  ( ( J
" ( 1 ... K ) ) " { n } ) ) ) : ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) -1-1-onto-> ( ( J " (
1 ... K ) )
" { n }
) )  ->  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) 
~~  ( ( J
" ( 1 ... K ) ) " { n } ) )
183179, 181, 182sylancl 645 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) 
~~  ( ( J
" ( 1 ... K ) ) " { n } ) )
184183ensymd 7161 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
( J " (
1 ... K ) )
" { n }
)  ~~  ( {
n }  X.  (
( J " (
1 ... K ) )
" { n }
) ) )
185 enfii 7329 . . . . . . 7  |-  ( ( ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) )  e.  Fin  /\  (
( J " (
1 ... K ) )
" { n }
)  ~~  ( {
n }  X.  (
( J " (
1 ... K ) )
" { n }
) ) )  -> 
( ( J "
( 1 ... K
) ) " {
n } )  e. 
Fin )
186179, 184, 185syl2anc 644 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
( J " (
1 ... K ) )
" { n }
)  e.  Fin )
187 ffvelrn 5871 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  n  e.  NN )  ->  ( F `  n )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
18819, 101, 187syl2an 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( F `  n )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
18933, 34elmap 7045 . . . . . . . . . . . . 13  |-  ( ( F `  n )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  ( F `  n
) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
190188, 189sylib 190 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
191190adantrr 699 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
192 imassrn 5219 . . . . . . . . . . . . . 14  |-  ( ( J " ( 1 ... K ) )
" { n }
)  C_  ran  ( J
" ( 1 ... K ) )
19326adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( J " ( 1 ... K ) )  C_  ( NN  X.  NN ) )
194 rnss 5101 . . . . . . . . . . . . . . . 16  |-  ( ( J " ( 1 ... K ) ) 
C_  ( NN  X.  NN )  ->  ran  ( J " ( 1 ... K ) )  C_  ran  ( NN  X.  NN ) )
195193, 194syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  ( J " ( 1 ... K ) ) 
C_  ran  ( NN  X.  NN ) )
196 rnxpid 5305 . . . . . . . . . . . . . . 15  |-  ran  ( NN  X.  NN )  =  NN
197195, 196syl6sseq 3396 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  ( J " ( 1 ... K ) ) 
C_  NN )
198192, 197syl5ss 3361 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
( J " (
1 ... K ) )
" { n }
)  C_  NN )
199198sseld 3349 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
i  e.  ( ( J " ( 1 ... K ) )
" { n }
)  ->  i  e.  NN ) )
200199impr 604 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  i  e.  NN )
201191, 200ffvelrnd 5874 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( ( F `  n ) `  i )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
20218, 201sseldi 3348 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( ( F `  n ) `  i )  e.  ( RR  X.  RR ) )
203 xp2nd 6380 . . . . . . . . 9  |-  ( ( ( F `  n
) `  i )  e.  ( RR  X.  RR )  ->  ( 2nd `  (
( F `  n
) `  i )
)  e.  RR )
204202, 203syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( 2nd `  ( ( F `  n ) `  i
) )  e.  RR )
205 xp1st 6379 . . . . . . . . 9  |-  ( ( ( F `  n
) `  i )  e.  ( RR  X.  RR )  ->  ( 1st `  (
( F `  n
) `  i )
)  e.  RR )
206202, 205syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( 1st `  ( ( F `  n ) `  i
) )  e.  RR )
207204, 206resubcld 9470 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( ( 2nd `  ( ( F `
 n ) `  i ) )  -  ( 1st `  ( ( F `  n ) `
 i ) ) )  e.  RR )
208207anassrs 631 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) )  ->  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) )  e.  RR )
209186, 208fsumrecl 12533 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  e.  RR )
210106, 110, 112syl2an 465 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  ( 2 ^ n ) )  e.  RR )
211102, 210readdcld 9120 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( vol * `  A
)  +  ( B  /  ( 2 ^ n ) ) )  e.  RR )
212101, 211sylan2 462 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) )  e.  RR )
213 eqid 2438 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  o.  ( F `  n
) )  =  ( ( abs  o.  -  )  o.  ( F `  n ) )
214 ovoliun.s . . . . . . . . . . . 12  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( F `  n ) ) )
215213, 214ovolsf 19374 . . . . . . . . . . 11  |-  ( ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) 
+oo ) )
216190, 215syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  S : NN --> ( 0 [,) 
+oo ) )
217 frn 5600 . . . . . . . . . 10  |-  ( S : NN --> ( 0 [,)  +oo )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
218216, 217syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
219 icossxr 11000 . . . . . . . . 9  |-  ( 0 [,)  +oo )  C_  RR*
220218, 219syl6ss 3362 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  S 
C_  RR* )
221 supxrcl 10898 . . . . . . . 8  |-  ( ran 
S  C_  RR*  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
222220, 221syl 16 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
223 mnfxr 10719 . . . . . . . . 9  |-  -oo  e.  RR*
224223a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  -oo  e.  RR* )
225103rexrd 9139 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( vol * `  A )  e.  RR* )
226 mnflt 10727 . . . . . . . . 9  |-  ( ( vol * `  A
)  e.  RR  ->  -oo 
<  ( vol * `  A ) )
227103, 226syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  -oo  <  ( vol * `  A
) )
228 ovoliun.x1 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  U.
ran  ( (,)  o.  ( F `  n ) ) )
229101, 228sylan2 462 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  A  C_ 
U. ran  ( (,)  o.  ( F `  n
) ) )
230214ovollb 19380 . . . . . . . . 9  |-  ( ( ( F `  n
) : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  ( F `  n
) ) )  -> 
( vol * `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
231190, 229, 230syl2anc 644 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( vol * `  A )  <_  sup ( ran  S ,  RR* ,  <  )
)
232224, 225, 222, 227, 231xrltletrd 10756 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  -oo  <  sup ( ran  S ,  RR* ,  <  ) )
233 ovoliun.x2 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( B  / 
( 2 ^ n
) ) ) )
234101, 233sylan2 462 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sup ( ran  S ,  RR* ,  <  )  <_  (
( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
235 xrre 10762 . . . . . . 7  |-  ( ( ( sup ( ran 
S ,  RR* ,  <  )  e.  RR*  /\  (
( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) )  e.  RR )  /\  (  -oo  <  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
236222, 212, 232, 234, 235syl22anc 1186 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
237 1z 10316 . . . . . . . . 9  |-  1  e.  ZZ
238237a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  1  e.  ZZ )
239213ovolfsval 19372 . . . . . . . . 9  |-  ( ( ( F `  n
) : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  i  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( F `  n )
) `  i )  =  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) ) )
240190, 239sylan 459 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( F `  n )
) `  i )  =  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) ) )
241213ovolfsf 19373 . . . . . . . . . . . . 13  |-  ( ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  ( F `  n
) ) : NN --> ( 0 [,)  +oo ) )
242190, 241syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  (
( abs  o.  -  )  o.  ( F `  n
) ) : NN --> ( 0 [,)  +oo ) )
243242ffvelrnda 5873 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( F `  n )
) `  i )  e.  ( 0 [,)  +oo ) )
244240, 243eqeltrrd 2513 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  (
( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  e.  ( 0 [,)  +oo ) )
245 elrege0 11012 . . . . . . . . . 10  |-  ( ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  e.  ( 0 [,)  +oo ) 
<->  ( ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) )  e.  RR  /\  0  <_  ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) ) ) )
246244, 245sylib 190 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  (
( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  e.  RR  /\  0  <_ 
( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) ) ) )
247246simpld 447 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  (
( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  e.  RR )
248246simprd 451 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  i  e.  NN )  ->  0  <_  ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) ) )
249 supxrub 10908 . . . . . . . . . . . . . . 15  |-  ( ( ran  S  C_  RR*  /\  z  e.  ran  S )  -> 
z  <_  sup ( ran  S ,  RR* ,  <  ) )
250220, 249sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  ( 1 ... L
) )  /\  z  e.  ran  S )  -> 
z  <_  sup ( ran  S ,  RR* ,  <  ) )
251250ralrimiva 2791 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  A. z  e.  ran  S  z  <_  sup ( ran  S ,  RR* ,  <  ) )
252 breq2 4219 . . . . . . . . . . . . . . 15  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( z  <_  x 
<->  z  <_  sup ( ran  S ,  RR* ,  <  ) ) )
253252ralbidv 2727 . . . . . . . . . . . . . 14  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. z  e.  ran  S  z  <_  x 
<-> 
A. z  e.  ran  S  z  <_  sup ( ran  S ,  RR* ,  <  ) ) )
254253rspcev 3054 . . . . . . . . . . . . 13  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. z  e.  ran  S  z  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )
255236, 251, 254syl2anc 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  E. x  e.  RR  A. z  e. 
ran  S  z  <_  x )
256 ffn 5594 . . . . . . . . . . . . . . 15  |-  ( S : NN --> ( 0 [,)  +oo )  ->  S  Fn  NN )
257216, 256syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  S  Fn  NN )
258 breq1 4218 . . . . . . . . . . . . . . 15  |-  ( z  =  ( S `  k )  ->  (
z  <_  x  <->  ( S `  k )  <_  x
) )
259258ralrn 5876 . . . . . . . . . . . . . 14  |-  ( S  Fn  NN  ->  ( A. z  e.  ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x
) )
260257, 259syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( A. z  e.  ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x
) )
261260rexbidv 2728 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( E. x  e.  RR  A. z  e.  ran  S  z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x
) )
262255, 261mpbid 203 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x
)
26377, 214, 238, 240, 247, 248, 262isumsup2 12631 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  S  ~~>  sup ( ran  S ,  RR ,  <  ) )
264214, 263syl5eqbrr 4249 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  ( F `  n )
) )  ~~>  sup ( ran  S ,  RR ,  <  ) )
265 climrel 12291 . . . . . . . . . 10  |-  Rel  ~~>
266265releldmi 5109 . . . . . . . . 9  |-  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  ( F `  n )
) )  ~~>  sup ( ran  S ,  RR ,  <  )  ->  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( F `  n ) ) )  e.  dom  ~~>  )
267264, 266syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  ( F `  n )
) )  e.  dom  ~~>  )
26877, 238, 186, 198, 240, 247, 248, 267isumless 12630 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  <_  sum_ i  e.  NN  (
( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) ) )
26977, 214, 238, 240, 247, 248, 262isumsup 12632 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  NN  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) )  =  sup ( ran 
S ,  RR ,  <  ) )
270 0re 9096 . . . . . . . . . . 11  |-  0  e.  RR
271 pnfxr 10718 . . . . . . . . . . 11  |-  +oo  e.  RR*
272 icossre 10996 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
273270, 271, 272mp2an 655 . . . . . . . . . 10  |-  ( 0 [,)  +oo )  C_  RR
274218, 273syl6ss 3362 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  S 
C_  RR )
275 1nn 10016 . . . . . . . . . . . 12  |-  1  e.  NN
276 fdm 5598 . . . . . . . . . . . . 13  |-  ( S : NN --> ( 0 [,)  +oo )  ->  dom  S  =  NN )
277216, 276syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  dom  S  =  NN )
278275, 277syl5eleqr 2525 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  1  e.  dom  S )
279 ne0i 3636 . . . . . . . . . . 11  |-  ( 1  e.  dom  S  ->  dom  S  =/=  (/) )
280278, 279syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  dom  S  =/=  (/) )
281 dm0rn0 5089 . . . . . . . . . . 11  |-  ( dom 
S  =  (/)  <->  ran  S  =  (/) )
282281necon3bii 2635 . . . . . . . . . 10  |-  ( dom 
S  =/=  (/)  <->  ran  S  =/=  (/) )
283280, 282sylib 190 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ran  S  =/=  (/) )
284 supxrre 10911 . . . . . . . . 9  |-  ( ( ran  S  C_  RR  /\ 
ran  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  ) )
285274, 283, 255, 284syl3anc 1185 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  ) )
286269, 285eqtr4d 2473 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  NN  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) )  =  sup ( ran 
S ,  RR* ,  <  ) )
287268, 286breqtrd 4239 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
288209, 236, 212, 287, 234letrd 9232 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  sum_ i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
289100, 209, 212, 288fsumle 12583 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) sum_ i  e.  ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  <_  sum_ n  e.  ( 1 ... L ) ( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
290 vex 2961 . . . . . . . . . . 11  |-  i  e. 
_V
291127, 290op1std 6360 . . . . . . . . . 10  |-  ( j  =  <. n ,  i
>.  ->  ( 1st `  j
)  =  n )
292291fveq2d 5735 . . . . . . . . 9  |-  ( j  =  <. n ,  i
>.  ->  ( F `  ( 1st `  j ) )  =  ( F `
 n ) )
293127, 290op2ndd 6361 . . . . . . . . 9  |-  ( j  =  <. n ,  i
>.  ->  ( 2nd `  j
)  =  i )
294292, 293fveq12d 5737 . . . . . . . 8  |-  ( j  =  <. n ,  i
>.  ->  ( ( F `
 ( 1st `  j
) ) `  ( 2nd `  j ) )  =  ( ( F `
 n ) `  i ) )
295294fveq2d 5735 . . . . . . 7  |-  ( j  =  <. n ,  i
>.  ->  ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  =  ( 2nd `  (
( F `  n
) `  i )
) )
296294fveq2d 5735 . . . . . . 7  |-  ( j  =  <. n ,  i
>.  ->  ( 1st `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  =  ( 1st `  (
( F `  n
) `  i )
) )
297295, 296oveq12d 6102 . . . . . 6  |-  ( j  =  <. n ,  i
>.  ->  ( ( 2nd `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) )  -  ( 1st `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) ) )  =  ( ( 2nd `  ( ( F `  n ) `  i
) )  -  ( 1st `  ( ( F `
 n ) `  i ) ) ) )
298207recnd 9119 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... L
)  /\  i  e.  ( ( J "
( 1 ... K
) ) " {
n } ) ) )  ->  ( ( 2nd `  ( ( F `
 n ) `  i ) )  -  ( 1st `  ( ( F `  n ) `
 i ) ) )  e.  CC )
299297, 100, 186, 298fsum2d 12560 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) sum_ i  e.  ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  = 
sum_ j  e.  U_  n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) ) )
300175sumeq1d 12500 . . . . 5  |-  ( ph  -> 
sum_ j  e.  U_  n  e.  ( 1 ... L ) ( { n }  X.  ( ( J "
( 1 ... K
) ) " {
n } ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  = 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) ) )
301299, 300eqtrd 2470 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) sum_ i  e.  ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd `  (
( F `  n
) `  i )
)  -  ( 1st `  ( ( F `  n ) `  i
) ) )  = 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) ) )
302103recnd 9119 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( vol * `  A )  e.  CC )
303113recnd 9119 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( B  /  ( 2 ^ n ) )  e.  CC )
304100, 302, 303fsumadd 12537 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) )  =  ( sum_ n  e.  ( 1 ... L ) ( vol
* `  A )  +  sum_ n  e.  ( 1 ... L ) ( B  /  (
2 ^ n ) ) ) )
305289, 301, 3043brtr3d 4244 . . 3  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  <_ 
( sum_ n  e.  ( 1 ... L ) ( vol * `  A )  +  sum_ n  e.  ( 1 ... L ) ( B  /  ( 2 ^ n ) ) ) )
306237a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
307 simpr 449 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
308 ovoliun.g . . . . . . . . . . . 12  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
309308fvmpt2 5815 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( vol * `  A
)  e.  RR )  ->  ( G `  n )  =  ( vol * `  A
) )
310307, 102, 309syl2anc 644 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  =  ( vol * `  A ) )
311310, 102eqeltrd 2512 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  RR )
31277, 306, 311serfre 11357 . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  G ) : NN --> RR )
313 ovoliun.t . . . . . . . . 9  |-  T  =  seq  1 (  +  ,  G )
314313feq1i 5588 . . . . . . . 8  |-  ( T : NN --> RR  <->  seq  1
(  +  ,  G
) : NN --> RR )
315312, 314sylibr 205 . . . . . . 7  |-  ( ph  ->  T : NN --> RR )
316 frn 5600 . . . . . . 7  |-  ( T : NN --> RR  ->  ran 
T  C_  RR )
317315, 316syl 16 . . . . . 6  |-  ( ph  ->  ran  T  C_  RR )
318 ressxr 9134 . . . . . 6  |-  RR  C_  RR*
319317, 318syl6ss 3362 . . . . 5  |-  ( ph  ->  ran  T  C_  RR* )
320101, 310sylan2 462 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... L
) )  ->  ( G `  n )  =  ( vol * `  A ) )
321 1re 9095 . . . . . . . . . . 11  |-  1  e.  RR
322321a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
323 ffvelrn 5871 . . . . . . . . . . . . 13  |-  ( ( J : NN --> ( NN 
X.  NN )  /\  1  e.  NN )  ->  ( J `  1
)  e.  ( NN 
X.  NN ) )
32423, 275, 323sylancl 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( J `  1
)  e.  ( NN 
X.  NN ) )
325 xp1st 6379 . . . . . . . . . . . 12  |-  ( ( J `  1 )  e.  ( NN  X.  NN )  ->  ( 1st `  ( J `  1
) )  e.  NN )
326324, 325syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( J `  1 )
)  e.  NN )
327326nnred 10020 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( J `  1 )
)  e.  RR )
328153zred 10380 . . . . . . . . . 10  |-  ( ph  ->  L  e.  RR )
329326nnge1d 10047 . . . . . . . . . 10  |-  ( ph  ->  1  <_  ( 1st `  ( J `  1
) ) )
330 eluzfz1 11069 . . . . . . . . . . . 12  |-  ( K  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... K
) )
33178, 330syl 16 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  ( 1 ... K ) )
332 fveq2 5731 . . . . . . . . . . . . . 14  |-  ( w  =  1  ->  ( J `  w )  =  ( J ` 
1 ) )
333332fveq2d 5735 . . . . . . . . . . . . 13  |-  ( w  =  1  ->  ( 1st `  ( J `  w ) )  =  ( 1st `  ( J `  1 )
) )
334333breq1d 4225 . . . . . . . . . . . 12  |-  ( w  =  1  ->  (
( 1st `  ( J `  w )
)  <_  L  <->  ( 1st `  ( J `  1
) )  <_  L
) )
335334rspcv 3050 . . . . . . . . . . 11  |-  ( 1  e.  ( 1 ... K )  ->  ( A. w  e.  (
1 ... K ) ( 1st `  ( J `
 w ) )  <_  L  ->  ( 1st `  ( J ` 
1 ) )  <_  L ) )
336331, 143, 335sylc 59 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( J `  1 )
)  <_  L )
337322, 327, 328, 329, 336letrd 9232 . . . . . . . . 9  |-  ( ph  ->  1  <_  L )
338 elnnz1 10312 . . . . . . . . 9  |-  ( L  e.  NN  <->  ( L  e.  ZZ  /\  1  <_  L ) )
339153, 337, 338sylanbrc 647 . . . . . . . 8  |-  ( ph  ->  L  e.  NN )
340339, 77syl6eleq 2528 . . . . . . 7  |-  ( ph  ->  L  e.  ( ZZ>= ` 
1 ) )
341320, 340, 302fsumser 12529 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( vol * `  A
)  =  (  seq  1 (  +  ,  G ) `  L
) )
342 seqfn 11340 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  seq  1 (  +  ,  G )  Fn  ( ZZ>=
`  1 ) )
343306, 342syl 16 . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  G )  Fn  ( ZZ>= `  1 )
)
344 fnfvelrn 5870 . . . . . . . 8  |-  ( (  seq  1 (  +  ,  G )  Fn  ( ZZ>= `  1 )  /\  L  e.  ( ZZ>=
`  1 ) )  ->  (  seq  1
(  +  ,  G
) `  L )  e.  ran  seq  1 (  +  ,  G ) )
345343, 340, 344syl2anc 644 . . . . . . 7  |-  ( ph  ->  (  seq  1 (  +  ,  G ) `
 L )  e. 
ran  seq  1 (  +  ,  G ) )
346313rneqi 5099 . . . . . . 7  |-  ran  T  =  ran  seq  1 (  +  ,  G )
347345, 346syl6eleqr 2529 . . . . . 6  |-  ( ph  ->  (  seq  1 (  +  ,  G ) `
 L )  e. 
ran  T )
348341, 347eqeltrd 2512 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( vol * `  A
)  e.  ran  T
)
349 supxrub 10908 . . . . 5  |-  ( ( ran  T  C_  RR*  /\  sum_ n  e.  ( 1 ... L ) ( vol
* `  A )  e.  ran  T )  ->  sum_ n  e.  ( 1 ... L ) ( vol * `  A
)  <_  sup ( ran  T ,  RR* ,  <  ) )
350319, 348, 349syl2anc 644 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( vol * `  A
)  <_  sup ( ran  T ,  RR* ,  <  ) )
351106recnd 9119 . . . . . 6  |-  ( ph  ->  B  e.  CC )
352 geo2sum 12655 . . . . . 6  |-  ( ( L  e.  NN  /\  B  e.  CC )  -> 
sum_ n  e.  (
1 ... L ) ( B  /  ( 2 ^ n ) )  =  ( B  -  ( B  /  (
2 ^ L ) ) ) )
353339, 351, 352syl2anc 644 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( B  /  ( 2 ^ n ) )  =  ( B  -  ( B  /  (
2 ^ L ) ) ) )
354339nnnn0d 10279 . . . . . . . . . 10  |-  ( ph  ->  L  e.  NN0 )
355 nnexpcl 11399 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  L  e.  NN0 )  -> 
( 2 ^ L
)  e.  NN )
356107, 354, 355sylancr 646 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ L
)  e.  NN )
357356nnrpd 10652 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ L
)  e.  RR+ )
358105, 357rpdivcld 10670 . . . . . . 7  |-  ( ph  ->  ( B  /  (
2 ^ L ) )  e.  RR+ )
359358rpge0d 10657 . . . . . 6  |-  ( ph  ->  0  <_  ( B  /  ( 2 ^ L ) ) )
360106, 356nndivred 10053 . . . . . . 7  |-  ( ph  ->  ( B  /  (
2 ^ L ) )  e.  RR )
361106, 360subge02d 9623 . . . . . 6  |-  ( ph  ->  ( 0  <_  ( B  /  ( 2 ^ L ) )  <->  ( B  -  ( B  / 
( 2 ^ L
) ) )  <_  B ) )
362359, 361mpbid 203 . . . . 5  |-  ( ph  ->  ( B  -  ( B  /  ( 2 ^ L ) ) )  <_  B )
363353, 362eqbrtrd 4235 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... L ) ( B  /  ( 2 ^ n ) )  <_  B )
364104, 114, 116, 106, 350, 363le2addd 9649 . . 3  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... L ) ( vol * `  A )  +  sum_ n  e.  ( 1 ... L ) ( B  /  ( 2 ^ n ) ) )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) )
36599, 115, 117, 305, 364letrd 9232 . 2  |-  ( ph  -> 
sum_ j  e.  ( J " ( 1 ... K ) ) ( ( 2nd `  (
( F `  ( 1st `  j ) ) `
 ( 2nd `  j
) ) )  -  ( 1st `  ( ( F `  ( 1st `  j ) ) `  ( 2nd `  j ) ) ) )  <_ 
( sup ( ran 
T ,  RR* ,  <  )  +  B ) )
36693, 365eqbrtrrd 4237 1  |-  ( ph  ->  ( U `  K
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   <.cop 3819   U.cuni 4017   U_ciun 4095   class class class wbr 4215    e. cmpt 4269    X. cxp 4879   dom cdm 4881   ran crn 4882    |` cres 4883   "cima 4884    o. ccom 4885   Rel wrel 4886    Fn wfn 5452   -->wf 5453   -1-1->wf1 5454   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084   1stc1st 6350   2ndc2nd 6351    ^m cmap 7021    ~~ cen 7109   Fincfn 7112   supcsup 7448   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    +oocpnf 9122    -oocmnf 9123   RR*cxr 9124    < clt 9125    <_ cle 9126    - cmin 9296    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   RR+crp 10617   (,)cioo 10921   [,)cico 10923   ...cfz 11048    seq cseq 11328   ^cexp 11387   abscabs 12044    ~~> cli 12283   sum_csu 12484   vol *covol 19364
This theorem is referenced by:  ovoliunlem2  19404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-ioo 10925  df-ico 10927  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-rlim 12288  df-sum 12485  df-ovol 19366
  Copyright terms: Public domain W3C validator