MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem2 Unicode version

Theorem ovoliunlem2 19259
Description: Lemma for ovoliun 19261. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t  |-  T  =  seq  1 (  +  ,  G )
ovoliun.g  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
ovoliun.a  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
ovoliun.v  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
ovoliun.r  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
ovoliun.b  |-  ( ph  ->  B  e.  RR+ )
ovoliun.s  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( F `  n ) ) )
ovoliun.u  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ovoliun.h  |-  H  =  ( k  e.  NN  |->  ( ( F `  ( 1st `  ( J `
 k ) ) ) `  ( 2nd `  ( J `  k
) ) ) )
ovoliun.j  |-  ( ph  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
ovoliun.f  |-  ( ph  ->  F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovoliun.x1  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  U.
ran  ( (,)  o.  ( F `  n ) ) )
ovoliun.x2  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( B  / 
( 2 ^ n
) ) ) )
Assertion
Ref Expression
ovoliunlem2  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Distinct variable groups:    A, k    k, n, B    k, F, n    k, J, n    n, H    ph, k, n    S, k    k, G    T, k    n, G    T, n
Allowed substitution hints:    A( n)    S( n)    U( k, n)    H( k)

Proof of Theorem ovoliunlem2
Dummy variables  j  m  x  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.a . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
21ralrimiva 2725 . . . 4  |-  ( ph  ->  A. n  e.  NN  A  C_  RR )
3 iunss 4066 . . . 4  |-  ( U_ n  e.  NN  A  C_  RR  <->  A. n  e.  NN  A  C_  RR )
42, 3sylibr 204 . . 3  |-  ( ph  ->  U_ n  e.  NN  A  C_  RR )
5 ovolcl 19234 . . 3  |-  ( U_ n  e.  NN  A  C_  RR  ->  ( vol * `
 U_ n  e.  NN  A )  e.  RR* )
64, 5syl 16 . 2  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  e.  RR* )
7 ovoliun.f . . . . . . . . . 10  |-  ( ph  ->  F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
87adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
9 ovoliun.j . . . . . . . . . . . 12  |-  ( ph  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
10 f1of 5607 . . . . . . . . . . . 12  |-  ( J : NN -1-1-onto-> ( NN  X.  NN )  ->  J : NN --> ( NN  X.  NN ) )
119, 10syl 16 . . . . . . . . . . 11  |-  ( ph  ->  J : NN --> ( NN 
X.  NN ) )
1211ffvelrnda 5802 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  ( NN  X.  NN ) )
13 xp1st 6308 . . . . . . . . . 10  |-  ( ( J `  k )  e.  ( NN  X.  NN )  ->  ( 1st `  ( J `  k
) )  e.  NN )
1412, 13syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( J `  k
) )  e.  NN )
158, 14ffvelrnd 5803 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( 1st `  ( J `  k )
) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
16 reex 9007 . . . . . . . . . . 11  |-  RR  e.  _V
1716, 16xpex 4923 . . . . . . . . . 10  |-  ( RR 
X.  RR )  e. 
_V
1817inex2 4279 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
19 nnex 9931 . . . . . . . . 9  |-  NN  e.  _V
2018, 19elmap 6971 . . . . . . . 8  |-  ( ( F `  ( 1st `  ( J `  k
) ) )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  ( F `  ( 1st `  ( J `  k ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2115, 20sylib 189 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( 1st `  ( J `  k )
) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
22 xp2nd 6309 . . . . . . . 8  |-  ( ( J `  k )  e.  ( NN  X.  NN )  ->  ( 2nd `  ( J `  k
) )  e.  NN )
2312, 22syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2nd `  ( J `  k
) )  e.  NN )
2421, 23ffvelrnd 5803 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( 1st `  ( J `  k
) ) ) `  ( 2nd `  ( J `
 k ) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
25 ovoliun.h . . . . . 6  |-  H  =  ( k  e.  NN  |->  ( ( F `  ( 1st `  ( J `
 k ) ) ) `  ( 2nd `  ( J `  k
) ) ) )
2624, 25fmptd 5825 . . . . 5  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
27 eqid 2380 . . . . . 6  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
28 ovoliun.u . . . . . 6  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
2927, 28ovolsf 19229 . . . . 5  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U : NN --> ( 0 [,) 
+oo ) )
30 frn 5530 . . . . 5  |-  ( U : NN --> ( 0 [,)  +oo )  ->  ran  U 
C_  ( 0 [,) 
+oo ) )
3126, 29, 303syl 19 . . . 4  |-  ( ph  ->  ran  U  C_  (
0 [,)  +oo ) )
32 icossxr 10920 . . . 4  |-  ( 0 [,)  +oo )  C_  RR*
3331, 32syl6ss 3296 . . 3  |-  ( ph  ->  ran  U  C_  RR* )
34 supxrcl 10818 . . 3  |-  ( ran 
U  C_  RR*  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR* )
3533, 34syl 16 . 2  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR* )
36 ovoliun.r . . . 4  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
37 ovoliun.b . . . . 5  |-  ( ph  ->  B  e.  RR+ )
3837rpred 10573 . . . 4  |-  ( ph  ->  B  e.  RR )
3936, 38readdcld 9041 . . 3  |-  ( ph  ->  ( sup ( ran 
T ,  RR* ,  <  )  +  B )  e.  RR )
4039rexrd 9060 . 2  |-  ( ph  ->  ( sup ( ran 
T ,  RR* ,  <  )  +  B )  e. 
RR* )
41 eliun 4032 . . . . . 6  |-  ( z  e.  U_ n  e.  NN  A  <->  E. n  e.  NN  z  e.  A
)
42 ovoliun.x1 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  U.
ran  ( (,)  o.  ( F `  n ) ) )
43423adant3 977 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  A  C_  U. ran  ( (,)  o.  ( F `
 n ) ) )
4413adant3 977 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  A  C_  RR )
457ffvelrnda 5802 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
4618, 19elmap 6971 . . . . . . . . . . . . 13  |-  ( ( F `  n )  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  ( F `  n
) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
4745, 46sylib 189 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
48473adant3 977 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
49 ovolfioo 19224 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  ( F `  n ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  ( F `
 n ) )  <->  A. z  e.  A  E. j  e.  NN  ( ( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) ) ) )
5044, 48, 49syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  ( A  C_ 
U. ran  ( (,)  o.  ( F `  n
) )  <->  A. z  e.  A  E. j  e.  NN  ( ( 1st `  ( ( F `  n ) `  j
) )  <  z  /\  z  <  ( 2nd `  ( ( F `  n ) `  j
) ) ) ) )
5143, 50mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  A. z  e.  A  E. j  e.  NN  ( ( 1st `  ( ( F `  n ) `  j
) )  <  z  /\  z  <  ( 2nd `  ( ( F `  n ) `  j
) ) ) )
52 simp3 959 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  z  e.  A )
53 rsp 2702 . . . . . . . . 9  |-  ( A. z  e.  A  E. j  e.  NN  (
( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) )  ->  (
z  e.  A  ->  E. j  e.  NN  ( ( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) ) ) )
5451, 52, 53sylc 58 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  E. j  e.  NN  ( ( 1st `  ( ( F `  n ) `  j
) )  <  z  /\  z  <  ( 2nd `  ( ( F `  n ) `  j
) ) ) )
55 simpl1 960 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ph )
56 f1ocnv 5620 . . . . . . . . . . . . 13  |-  ( J : NN -1-1-onto-> ( NN  X.  NN )  ->  `' J :
( NN  X.  NN )
-1-1-onto-> NN )
579, 56syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  `' J : ( NN 
X.  NN ) -1-1-onto-> NN )
58 f1of 5607 . . . . . . . . . . . 12  |-  ( `' J : ( NN 
X.  NN ) -1-1-onto-> NN  ->  `' J : ( NN 
X.  NN ) --> NN )
5955, 57, 583syl 19 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  `' J : ( NN  X.  NN ) --> NN )
60 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  n  e.  NN )
61 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  j  e.  NN )
6259, 60, 61fovrnd 6150 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
n `' J j )  e.  NN )
63 fveq2 5661 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  ( n `' J j )  -> 
( J `  k
)  =  ( J `
 ( n `' J j ) ) )
6463fveq2d 5665 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( n `' J j )  -> 
( 1st `  ( J `  k )
)  =  ( 1st `  ( J `  (
n `' J j ) ) ) )
6564fveq2d 5665 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( n `' J j )  -> 
( F `  ( 1st `  ( J `  k ) ) )  =  ( F `  ( 1st `  ( J `
 ( n `' J j ) ) ) ) )
6663fveq2d 5665 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( n `' J j )  -> 
( 2nd `  ( J `  k )
)  =  ( 2nd `  ( J `  (
n `' J j ) ) ) )
6765, 66fveq12d 5667 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n `' J j )  -> 
( ( F `  ( 1st `  ( J `
 k ) ) ) `  ( 2nd `  ( J `  k
) ) )  =  ( ( F `  ( 1st `  ( J `
 ( n `' J j ) ) ) ) `  ( 2nd `  ( J `  ( n `' J
j ) ) ) ) )
68 fvex 5675 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  ( 1st `  ( J `  (
n `' J j ) ) ) ) `
 ( 2nd `  ( J `  ( n `' J j ) ) ) )  e.  _V
6967, 25, 68fvmpt 5738 . . . . . . . . . . . . . . . 16  |-  ( ( n `' J j )  e.  NN  ->  ( H `  ( n `' J j ) )  =  ( ( F `
 ( 1st `  ( J `  ( n `' J j ) ) ) ) `  ( 2nd `  ( J `  ( n `' J
j ) ) ) ) )
7062, 69syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( H `  ( n `' J j ) )  =  ( ( F `
 ( 1st `  ( J `  ( n `' J j ) ) ) ) `  ( 2nd `  ( J `  ( n `' J
j ) ) ) ) )
71 df-ov 6016 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n `' J j )  =  ( `' J `  <. n ,  j >.
)
7271fveq2i 5664 . . . . . . . . . . . . . . . . . . . 20  |-  ( J `
 ( n `' J j ) )  =  ( J `  ( `' J `  <. n ,  j >. )
)
7355, 9syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
74 opelxpi 4843 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  NN  /\  j  e.  NN )  -> 
<. n ,  j >.  e.  ( NN  X.  NN ) )
7560, 61, 74syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  <. n ,  j >.  e.  ( NN  X.  NN ) )
76 f1ocnvfv2 5947 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J : NN -1-1-onto-> ( NN  X.  NN )  /\  <. n ,  j
>.  e.  ( NN  X.  NN ) )  ->  ( J `  ( `' J `  <. n ,  j >. ) )  = 
<. n ,  j >.
)
7773, 75, 76syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( J `  ( `' J `  <. n ,  j >. ) )  = 
<. n ,  j >.
)
7872, 77syl5eq 2424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( J `  ( n `' J j ) )  =  <. n ,  j
>. )
7978fveq2d 5665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 1st `  ( J `  ( n `' J
j ) ) )  =  ( 1st `  <. n ,  j >. )
)
80 vex 2895 . . . . . . . . . . . . . . . . . . 19  |-  n  e. 
_V
81 vex 2895 . . . . . . . . . . . . . . . . . . 19  |-  j  e. 
_V
8280, 81op1st 6287 . . . . . . . . . . . . . . . . . 18  |-  ( 1st `  <. n ,  j
>. )  =  n
8379, 82syl6eq 2428 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 1st `  ( J `  ( n `' J
j ) ) )  =  n )
8483fveq2d 5665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( F `  ( 1st `  ( J `  (
n `' J j ) ) ) )  =  ( F `  n ) )
8578fveq2d 5665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 2nd `  ( J `  ( n `' J
j ) ) )  =  ( 2nd `  <. n ,  j >. )
)
8680, 81op2nd 6288 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  <. n ,  j
>. )  =  j
8785, 86syl6eq 2428 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 2nd `  ( J `  ( n `' J
j ) ) )  =  j )
8884, 87fveq12d 5667 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
( F `  ( 1st `  ( J `  ( n `' J
j ) ) ) ) `  ( 2nd `  ( J `  (
n `' J j ) ) ) )  =  ( ( F `
 n ) `  j ) )
8970, 88eqtrd 2412 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( H `  ( n `' J j ) )  =  ( ( F `
 n ) `  j ) )
9089fveq2d 5665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 1st `  ( H `  ( n `' J
j ) ) )  =  ( 1st `  (
( F `  n
) `  j )
) )
9190breq1d 4156 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
( 1st `  ( H `  ( n `' J j ) ) )  <  z  <->  ( 1st `  ( ( F `  n ) `  j
) )  <  z
) )
9289fveq2d 5665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  ( 2nd `  ( H `  ( n `' J
j ) ) )  =  ( 2nd `  (
( F `  n
) `  j )
) )
9392breq2d 4158 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
z  <  ( 2nd `  ( H `  (
n `' J j ) ) )  <->  z  <  ( 2nd `  ( ( F `  n ) `
 j ) ) ) )
9491, 93anbi12d 692 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
( ( 1st `  ( H `  ( n `' J j ) ) )  <  z  /\  z  <  ( 2nd `  ( H `  ( n `' J j ) ) ) )  <->  ( ( 1st `  ( ( F `
 n ) `  j ) )  < 
z  /\  z  <  ( 2nd `  ( ( F `  n ) `
 j ) ) ) ) )
9594biimprd 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
( ( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) )  ->  (
( 1st `  ( H `  ( n `' J j ) ) )  <  z  /\  z  <  ( 2nd `  ( H `  ( n `' J j ) ) ) ) ) )
96 fveq2 5661 . . . . . . . . . . . . . 14  |-  ( m  =  ( n `' J j )  -> 
( H `  m
)  =  ( H `
 ( n `' J j ) ) )
9796fveq2d 5665 . . . . . . . . . . . . 13  |-  ( m  =  ( n `' J j )  -> 
( 1st `  ( H `  m )
)  =  ( 1st `  ( H `  (
n `' J j ) ) ) )
9897breq1d 4156 . . . . . . . . . . . 12  |-  ( m  =  ( n `' J j )  -> 
( ( 1st `  ( H `  m )
)  <  z  <->  ( 1st `  ( H `  (
n `' J j ) ) )  < 
z ) )
9996fveq2d 5665 . . . . . . . . . . . . 13  |-  ( m  =  ( n `' J j )  -> 
( 2nd `  ( H `  m )
)  =  ( 2nd `  ( H `  (
n `' J j ) ) ) )
10099breq2d 4158 . . . . . . . . . . . 12  |-  ( m  =  ( n `' J j )  -> 
( z  <  ( 2nd `  ( H `  m ) )  <->  z  <  ( 2nd `  ( H `
 ( n `' J j ) ) ) ) )
10198, 100anbi12d 692 . . . . . . . . . . 11  |-  ( m  =  ( n `' J j )  -> 
( ( ( 1st `  ( H `  m
) )  <  z  /\  z  <  ( 2nd `  ( H `  m
) ) )  <->  ( ( 1st `  ( H `  ( n `' J
j ) ) )  <  z  /\  z  <  ( 2nd `  ( H `  ( n `' J j ) ) ) ) ) )
102101rspcev 2988 . . . . . . . . . 10  |-  ( ( ( n `' J
j )  e.  NN  /\  ( ( 1st `  ( H `  ( n `' J j ) ) )  <  z  /\  z  <  ( 2nd `  ( H `  ( n `' J j ) ) ) ) )  ->  E. m  e.  NN  ( ( 1st `  ( H `  m )
)  <  z  /\  z  <  ( 2nd `  ( H `  m )
) ) )
10362, 95, 102ee12an 1369 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN  /\  z  e.  A )  /\  j  e.  NN )  ->  (
( ( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) )  ->  E. m  e.  NN  ( ( 1st `  ( H `  m
) )  <  z  /\  z  <  ( 2nd `  ( H `  m
) ) ) ) )
104103rexlimdva 2766 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  ( E. j  e.  NN  (
( 1st `  (
( F `  n
) `  j )
)  <  z  /\  z  <  ( 2nd `  (
( F `  n
) `  j )
) )  ->  E. m  e.  NN  ( ( 1st `  ( H `  m
) )  <  z  /\  z  <  ( 2nd `  ( H `  m
) ) ) ) )
10554, 104mpd 15 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN  /\  z  e.  A
)  ->  E. m  e.  NN  ( ( 1st `  ( H `  m
) )  <  z  /\  z  <  ( 2nd `  ( H `  m
) ) ) )
106105rexlimdv3a 2768 . . . . . 6  |-  ( ph  ->  ( E. n  e.  NN  z  e.  A  ->  E. m  e.  NN  ( ( 1st `  ( H `  m )
)  <  z  /\  z  <  ( 2nd `  ( H `  m )
) ) ) )
10741, 106syl5bi 209 . . . . 5  |-  ( ph  ->  ( z  e.  U_ n  e.  NN  A  ->  E. m  e.  NN  ( ( 1st `  ( H `  m )
)  <  z  /\  z  <  ( 2nd `  ( H `  m )
) ) ) )
108107ralrimiv 2724 . . . 4  |-  ( ph  ->  A. z  e.  U_  n  e.  NN  A E. m  e.  NN  ( ( 1st `  ( H `  m )
)  <  z  /\  z  <  ( 2nd `  ( H `  m )
) ) )
109 ovolfioo 19224 . . . . 5  |-  ( (
U_ n  e.  NN  A  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( U_ n  e.  NN  A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  U_  n  e.  NN  A E. m  e.  NN  ( ( 1st `  ( H `  m )
)  <  z  /\  z  <  ( 2nd `  ( H `  m )
) ) ) )
1104, 26, 109syl2anc 643 . . . 4  |-  ( ph  ->  ( U_ n  e.  NN  A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  U_  n  e.  NN  A E. m  e.  NN  ( ( 1st `  ( H `  m
) )  <  z  /\  z  <  ( 2nd `  ( H `  m
) ) ) ) )
111108, 110mpbird 224 . . 3  |-  ( ph  ->  U_ n  e.  NN  A  C_  U. ran  ( (,)  o.  H ) )
11228ovollb 19235 . . 3  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U_ n  e.  NN  A  C_ 
U. ran  ( (,)  o.  H ) )  -> 
( vol * `  U_ n  e.  NN  A
)  <_  sup ( ran  U ,  RR* ,  <  ) )
11326, 111, 112syl2anc 643 . 2  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  <_  sup ( ran  U ,  RR* ,  <  ) )
114 fzfi 11231 . . . . . . 7  |-  ( 1 ... j )  e. 
Fin
115 elfznn 11005 . . . . . . . . . 10  |-  ( w  e.  ( 1 ... j )  ->  w  e.  NN )
116 ffvelrn 5800 . . . . . . . . . . 11  |-  ( ( J : NN --> ( NN 
X.  NN )  /\  w  e.  NN )  ->  ( J `  w
)  e.  ( NN 
X.  NN ) )
117 xp1st 6308 . . . . . . . . . . 11  |-  ( ( J `  w )  e.  ( NN  X.  NN )  ->  ( 1st `  ( J `  w
) )  e.  NN )
118 nnre 9932 . . . . . . . . . . 11  |-  ( ( 1st `  ( J `
 w ) )  e.  NN  ->  ( 1st `  ( J `  w ) )  e.  RR )
119116, 117, 1183syl 19 . . . . . . . . . 10  |-  ( ( J : NN --> ( NN 
X.  NN )  /\  w  e.  NN )  ->  ( 1st `  ( J `  w )
)  e.  RR )
12011, 115, 119syl2an 464 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( 1 ... j
) )  ->  ( 1st `  ( J `  w ) )  e.  RR )
121120ralrimiva 2725 . . . . . . . 8  |-  ( ph  ->  A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  e.  RR )
122121adantr 452 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN )  ->  A. w  e.  ( 1 ... j
) ( 1st `  ( J `  w )
)  e.  RR )
123 fimaxre3 9882 . . . . . . 7  |-  ( ( ( 1 ... j
)  e.  Fin  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  e.  RR )  ->  E. x  e.  RR  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  x )
124114, 122, 123sylancr 645 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  E. x  e.  RR  A. w  e.  ( 1 ... j
) ( 1st `  ( J `  w )
)  <_  x )
125 fllep1 11130 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
126125ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  x  <_  ( ( |_ `  x )  +  1 ) )
127120adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  ( 1st `  ( J `  w ) )  e.  RR )
128 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  x  e.  RR )
129 flcl 11124 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  ZZ )
130129peano2zd 10303 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  ZZ )
131130zred 10300 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  RR )
132131ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  (
( |_ `  x
)  +  1 )  e.  RR )
133 letr 9093 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( J `  w )
)  e.  RR  /\  x  e.  RR  /\  (
( |_ `  x
)  +  1 )  e.  RR )  -> 
( ( ( 1st `  ( J `  w
) )  <_  x  /\  x  <_  ( ( |_ `  x )  +  1 ) )  ->  ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )
134127, 128, 132, 133syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  (
( ( 1st `  ( J `  w )
)  <_  x  /\  x  <_  ( ( |_
`  x )  +  1 ) )  -> 
( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )
135126, 134mpan2d 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  w  e.  ( 1 ... j
) )  ->  (
( 1st `  ( J `  w )
)  <_  x  ->  ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )
136135ralimdva 2720 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  x  ->  A. w  e.  ( 1 ... j
) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )
137136adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  RR )  ->  ( A. w  e.  (
1 ... j ) ( 1st `  ( J `
 w ) )  <_  x  ->  A. w  e.  ( 1 ... j
) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )
138 ovoliun.t . . . . . . . . . 10  |-  T  =  seq  1 (  +  ,  G )
139 ovoliun.g . . . . . . . . . 10  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
140 simpll 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  ph )
141140, 1sylan 458 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  NN )  /\  ( x  e.  RR  /\ 
A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )  /\  n  e.  NN )  ->  A  C_  RR )
142 ovoliun.v . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
143140, 142sylan 458 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  NN )  /\  ( x  e.  RR  /\ 
A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )  /\  n  e.  NN )  ->  ( vol * `  A )  e.  RR )
144140, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
145140, 37syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  B  e.  RR+ )
146 ovoliun.s . . . . . . . . . 10  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( F `  n ) ) )
147140, 9syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  J : NN -1-1-onto-> ( NN  X.  NN ) )
148140, 7syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  F : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
149140, 42sylan 458 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  NN )  /\  ( x  e.  RR  /\ 
A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )  /\  n  e.  NN )  ->  A  C_  U. ran  ( (,)  o.  ( F `
 n ) ) )
150 ovoliun.x2 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( B  / 
( 2 ^ n
) ) ) )
151140, 150sylan 458 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  NN )  /\  ( x  e.  RR  /\ 
A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) ) )  /\  n  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
152 simplr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  j  e.  NN )
153130ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  ( ( |_
`  x )  +  1 )  e.  ZZ )
154 simprr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  A. w  e.  ( 1 ... j ) ( 1st `  ( J `  w )
)  <_  ( ( |_ `  x )  +  1 ) )
155138, 139, 141, 143, 144, 145, 146, 28, 25, 147, 148, 149, 151, 152, 153, 154ovoliunlem1 19258 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  NN )  /\  (
x  e.  RR  /\  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 ) ) )  ->  ( U `  j )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) )
156155expr 599 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  RR )  ->  ( A. w  e.  (
1 ... j ) ( 1st `  ( J `
 w ) )  <_  ( ( |_
`  x )  +  1 )  ->  ( U `  j )  <_  ( sup ( ran 
T ,  RR* ,  <  )  +  B ) ) )
157137, 156syld 42 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  RR )  ->  ( A. w  e.  (
1 ... j ) ( 1st `  ( J `
 w ) )  <_  x  ->  ( U `  j )  <_  ( sup ( ran 
T ,  RR* ,  <  )  +  B ) ) )
158157rexlimdva 2766 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  ( E. x  e.  RR  A. w  e.  ( 1 ... j ) ( 1st `  ( J `
 w ) )  <_  x  ->  ( U `  j )  <_  ( sup ( ran 
T ,  RR* ,  <  )  +  B ) ) )
159124, 158mpd 15 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  <_ 
( sup ( ran 
T ,  RR* ,  <  )  +  B ) )
160159ralrimiva 2725 . . . 4  |-  ( ph  ->  A. j  e.  NN  ( U `  j )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) )
16126, 29syl 16 . . . . 5  |-  ( ph  ->  U : NN --> ( 0 [,)  +oo ) )
162 ffn 5524 . . . . 5  |-  ( U : NN --> ( 0 [,)  +oo )  ->  U  Fn  NN )
163 breq1 4149 . . . . . 6  |-  ( z  =  ( U `  j )  ->  (
z  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
)  <->  ( U `  j )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) ) )
164163ralrn 5805 . . . . 5  |-  ( U  Fn  NN  ->  ( A. z  e.  ran  U  z  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
)  <->  A. j  e.  NN  ( U `  j )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) ) )
165161, 162, 1643syl 19 . . . 4  |-  ( ph  ->  ( A. z  e. 
ran  U  z  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B )  <->  A. j  e.  NN  ( U `  j )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) ) )
166160, 165mpbird 224 . . 3  |-  ( ph  ->  A. z  e.  ran  U  z  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
167 supxrleub 10830 . . . 4  |-  ( ( ran  U  C_  RR*  /\  ( sup ( ran  T ,  RR* ,  <  )  +  B )  e.  RR* )  ->  ( sup ( ran  U ,  RR* ,  <  )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B )  <->  A. z  e.  ran  U  z  <_ 
( sup ( ran 
T ,  RR* ,  <  )  +  B ) ) )
16833, 40, 167syl2anc 643 . . 3  |-  ( ph  ->  ( sup ( ran 
U ,  RR* ,  <  )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B )  <->  A. z  e.  ran  U  z  <_ 
( sup ( ran 
T ,  RR* ,  <  )  +  B ) ) )
169166, 168mpbird 224 . 2  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  <_  ( sup ( ran 
T ,  RR* ,  <  )  +  B ) )
1706, 35, 40, 113, 169xrletrd 10677 1  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643    i^i cin 3255    C_ wss 3256   <.cop 3753   U.cuni 3950   U_ciun 4028   class class class wbr 4146    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   ran crn 4812    o. ccom 4815    Fn wfn 5382   -->wf 5383   -1-1-onto->wf1o 5386   ` cfv 5387  (class class class)co 6013   1stc1st 6279   2ndc2nd 6280    ^m cmap 6947   Fincfn 7038   supcsup 7373   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    +oocpnf 9043   RR*cxr 9045    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   NNcn 9925   2c2 9974   ZZcz 10207   RR+crp 10537   (,)cioo 10841   [,)cico 10843   ...cfz 10968   |_cfl 11121    seq cseq 11243   ^cexp 11302   abscabs 11959   vol *covol 19219
This theorem is referenced by:  ovoliunlem3  19260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-ioo 10845  df-ico 10847  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-ovol 19221
  Copyright terms: Public domain W3C validator