MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Unicode version

Theorem ovoliunlem3 18879
Description: Lemma for ovoliun 18880. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t  |-  T  =  seq  1 (  +  ,  G )
ovoliun.g  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
ovoliun.a  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
ovoliun.v  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
ovoliun.r  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
ovoliun.b  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
ovoliunlem3  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Distinct variable groups:    B, n    ph, n    n, G    T, n
Allowed substitution hint:    A( n)

Proof of Theorem ovoliunlem3
Dummy variables  f 
g  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2432 . . . 4  |-  F/_ m A
2 nfcsb1v 3126 . . . 4  |-  F/_ n [_ m  /  n ]_ A
3 csbeq1a 3102 . . . 4  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
41, 2, 3cbviun 3955 . . 3  |-  U_ n  e.  NN  A  =  U_ m  e.  NN  [_ m  /  n ]_ A
54fveq2i 5544 . 2  |-  ( vol
* `  U_ n  e.  NN  A )  =  ( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)
6 ovoliun.a . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
7 ovoliun.v . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  A )  e.  RR )
8 ovoliun.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
9 2nn 9893 . . . . . . . . 9  |-  2  e.  NN
10 nnnn0 9988 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
11 nnexpcl 11132 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
129, 10, 11sylancr 644 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
1312nnrpd 10405 . . . . . . 7  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  RR+ )
14 rpdivcl 10392 . . . . . . 7  |-  ( ( B  e.  RR+  /\  (
2 ^ n )  e.  RR+ )  ->  ( B  /  ( 2 ^ n ) )  e.  RR+ )
158, 13, 14syl2an 463 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  ( 2 ^ n ) )  e.  RR+ )
16 eqid 2296 . . . . . . 7  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
1716ovolgelb 18855 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol * `  A )  e.  RR  /\  ( B  /  ( 2 ^ n ) )  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
186, 7, 15, 17syl3anc 1182 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
1918ralrimiva 2639 . . . 4  |-  ( ph  ->  A. n  e.  NN  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
20 ovex 5899 . . . . 5  |-  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  e.  _V
21 nnenom 11058 . . . . 5  |-  NN  ~~  om
22 coeq2 4858 . . . . . . . . 9  |-  ( f  =  ( g `  n )  ->  ( (,)  o.  f )  =  ( (,)  o.  (
g `  n )
) )
2322rneqd 4922 . . . . . . . 8  |-  ( f  =  ( g `  n )  ->  ran  ( (,)  o.  f )  =  ran  ( (,) 
o.  ( g `  n ) ) )
2423unieqd 3854 . . . . . . 7  |-  ( f  =  ( g `  n )  ->  U. ran  ( (,)  o.  f )  =  U. ran  ( (,)  o.  ( g `  n ) ) )
2524sseq2d 3219 . . . . . 6  |-  ( f  =  ( g `  n )  ->  ( A  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  ( g `
 n ) ) ) )
26 coeq2 4858 . . . . . . . . . 10  |-  ( f  =  ( g `  n )  ->  (
( abs  o.  -  )  o.  f )  =  ( ( abs  o.  -  )  o.  ( g `  n ) ) )
2726seqeq3d 11070 . . . . . . . . 9  |-  ( f  =  ( g `  n )  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  =  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) )
2827rneqd 4922 . . . . . . . 8  |-  ( f  =  ( g `  n )  ->  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  =  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) )
2928supeq1d 7215 . . . . . . 7  |-  ( f  =  ( g `  n )  ->  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) ,  RR* ,  <  ) )
3029breq1d 4049 . . . . . 6  |-  ( f  =  ( g `  n )  ->  ( sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( B  / 
( 2 ^ n
) ) )  <->  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
3125, 30anbi12d 691 . . . . 5  |-  ( f  =  ( g `  n )  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  ( A  C_ 
U. ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
3220, 21, 31axcc4 8081 . . . 4  |-  ( A. n  e.  NN  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  ->  E. g
( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
3319, 32syl 15 . . 3  |-  ( ph  ->  E. g ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
34 xpnnen 12503 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
3534ensymi 6927 . . . . . 6  |-  NN  ~~  ( NN  X.  NN )
36 bren 6887 . . . . . 6  |-  ( NN 
~~  ( NN  X.  NN )  <->  E. j  j : NN -1-1-onto-> ( NN  X.  NN ) )
3735, 36mpbi 199 . . . . 5  |-  E. j 
j : NN -1-1-onto-> ( NN  X.  NN )
38 ovoliun.t . . . . . . . 8  |-  T  =  seq  1 (  +  ,  G )
39 ovoliun.g . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  ( vol * `  A
) )
40 nfcv 2432 . . . . . . . . . 10  |-  F/_ m
( vol * `  A )
41 nfcv 2432 . . . . . . . . . . 11  |-  F/_ n vol *
4241, 2nffv 5548 . . . . . . . . . 10  |-  F/_ n
( vol * `  [_ m  /  n ]_ A )
433fveq2d 5545 . . . . . . . . . 10  |-  ( n  =  m  ->  ( vol * `  A )  =  ( vol * `  [_ m  /  n ]_ A ) )
4440, 42, 43cbvmpt 4126 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( vol
* `  A )
)  =  ( m  e.  NN  |->  ( vol
* `  [_ m  /  n ]_ A ) )
4539, 44eqtri 2316 . . . . . . . 8  |-  G  =  ( m  e.  NN  |->  ( vol * `  [_ m  /  n ]_ A ) )
46 simpll 730 . . . . . . . . 9  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  ph )
476ralrimiva 2639 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  A  C_  RR )
48 nfv 1609 . . . . . . . . . . . 12  |-  F/ m  A  C_  RR
49 nfcv 2432 . . . . . . . . . . . . 13  |-  F/_ n RR
502, 49nfss 3186 . . . . . . . . . . . 12  |-  F/ n [_ m  /  n ]_ A  C_  RR
513sseq1d 3218 . . . . . . . . . . . 12  |-  ( n  =  m  ->  ( A  C_  RR  <->  [_ m  /  n ]_ A  C_  RR ) )
5248, 50, 51cbvral 2773 . . . . . . . . . . 11  |-  ( A. n  e.  NN  A  C_  RR  <->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
5347, 52sylib 188 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
5453r19.21bi 2654 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  RR )
5546, 54sylan 457 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  RR )
567ralrimiva 2639 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( vol * `  A
)  e.  RR )
5740nfel1 2442 . . . . . . . . . . . 12  |-  F/ m
( vol * `  A )  e.  RR
5842nfel1 2442 . . . . . . . . . . . 12  |-  F/ n
( vol * `  [_ m  /  n ]_ A )  e.  RR
5943eleq1d 2362 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( vol * `  A )  e.  RR  <->  ( vol * `  [_ m  /  n ]_ A )  e.  RR ) )
6057, 58, 59cbvral 2773 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( vol * `  A )  e.  RR  <->  A. m  e.  NN  ( vol * `  [_ m  /  n ]_ A )  e.  RR )
6156, 60sylib 188 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  ( vol * `  [_ m  /  n ]_ A )  e.  RR )
6261r19.21bi 2654 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol
* `  [_ m  /  n ]_ A )  e.  RR )
6346, 62sylan 457 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  ( vol * `  [_ m  /  n ]_ A )  e.  RR )
64 ovoliun.r . . . . . . . . 9  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
6564ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
668ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  B  e.  RR+ )
67 eqid 2296 . . . . . . . 8  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) )  =  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) )
68 eqid 2296 . . . . . . . 8  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( k  e.  NN  |->  ( ( g `
 ( 1st `  (
j `  k )
) ) `  ( 2nd `  ( j `  k ) ) ) ) ) )  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `
 k ) ) ) `  ( 2nd `  ( j `  k
) ) ) ) ) )
69 eqid 2296 . . . . . . . 8  |-  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `  k
) ) ) `  ( 2nd `  ( j `
 k ) ) ) )  =  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `  k ) ) ) `
 ( 2nd `  (
j `  k )
) ) )
70 simplr 731 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  j : NN -1-1-onto-> ( NN  X.  NN ) )
71 simprl 732 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
72 simprr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  A. n  e.  NN  ( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
73 nfv 1609 . . . . . . . . . . . 12  |-  F/ m
( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
74 nfcv 2432 . . . . . . . . . . . . . 14  |-  F/_ n U. ran  ( (,)  o.  ( g `  m
) )
752, 74nfss 3186 . . . . . . . . . . . . 13  |-  F/ n [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )
76 nfcv 2432 . . . . . . . . . . . . . 14  |-  F/_ n sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) ) ,  RR* ,  <  )
77 nfcv 2432 . . . . . . . . . . . . . 14  |-  F/_ n  <_
78 nfcv 2432 . . . . . . . . . . . . . . 15  |-  F/_ n  +
79 nfcv 2432 . . . . . . . . . . . . . . 15  |-  F/_ n
( B  /  (
2 ^ m ) )
8042, 78, 79nfov 5897 . . . . . . . . . . . . . 14  |-  F/_ n
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) )
8176, 77, 80nfbr 4083 . . . . . . . . . . . . 13  |-  F/ n sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) ) ,  RR* ,  <  )  <_  ( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) )
8275, 81nfan 1783 . . . . . . . . . . . 12  |-  F/ n
( [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) )
83 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
8483coeq2d 4862 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( (,)  o.  ( g `  n ) )  =  ( (,)  o.  (
g `  m )
) )
8584rneqd 4922 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ran  ( (,)  o.  ( g `
 n ) )  =  ran  ( (,) 
o.  ( g `  m ) ) )
8685unieqd 3854 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  U. ran  ( (,)  o.  ( g `
 n ) )  =  U. ran  ( (,)  o.  ( g `  m ) ) )
873, 86sseq12d 3220 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( A  C_  U. ran  ( (,)  o.  ( g `  n ) )  <->  [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) ) ) )
8883coeq2d 4862 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
( abs  o.  -  )  o.  ( g `  n
) )  =  ( ( abs  o.  -  )  o.  ( g `  m ) ) )
8988seqeq3d 11070 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) )  =  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) )
9089rneqd 4922 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) )  =  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) )
9190supeq1d 7215 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  ) )
92 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
2 ^ n )  =  ( 2 ^ m ) )
9392oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( B  /  ( 2 ^ n ) )  =  ( B  /  (
2 ^ m ) ) )
9443, 93oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) )  =  ( ( vol * `  [_ m  /  n ]_ A )  +  ( B  / 
( 2 ^ m
) ) ) )
9591, 94breq12d 4052 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  n ) ) ) ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) )  <->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  )  <_  (
( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9687, 95anbi12d 691 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  ( [_ m  /  n ]_ A  C_ 
U. ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) ) )
9773, 82, 96cbvral 2773 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( A  C_  U. ran  ( (,)  o.  ( g `  n ) )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  n ) ) ) ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  A. m  e.  NN  ( [_ m  /  n ]_ A  C_  U.
ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9872, 97sylib 188 . . . . . . . . . 10  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  A. m  e.  NN  ( [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9998r19.21bi 2654 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  ( [_ m  /  n ]_ A  C_  U.
ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
10099simpld 445 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) ) )
10199simprd 449 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  )  <_  (
( vol * `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) )
10238, 45, 55, 63, 65, 66, 67, 68, 69, 70, 71, 100, 101ovoliunlem2 18878 . . . . . . 7  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  ( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) )
103102exp31 587 . . . . . 6  |-  ( ph  ->  ( j : NN -1-1-onto-> ( NN  X.  NN )  -> 
( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) ) )
104103exlimdv 1626 . . . . 5  |-  ( ph  ->  ( E. j  j : NN -1-1-onto-> ( NN  X.  NN )  ->  ( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) ) )
10537, 104mpi 16 . . . 4  |-  ( ph  ->  ( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) )
106105exlimdv 1626 . . 3  |-  ( ph  ->  ( E. g ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) )
10733, 106mpd 14 . 2  |-  ( ph  ->  ( vol * `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
1085, 107syl5eqbr 4072 1  |-  ( ph  ->  ( vol * `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   [_csb 3094    i^i cin 3164    C_ wss 3165   U.cuni 3843   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   ran crn 4706    o. ccom 4709   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137    ^m cmap 6788    ~~ cen 6876   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   RR+crp 10370   (,)cioo 10672    seq cseq 11062   ^cexp 11120   abscabs 11735   vol *covol 18838
This theorem is referenced by:  ovoliun  18880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ioo 10676  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-ovol 18840
  Copyright terms: Public domain W3C validator