MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb Structured version   Unicode version

Theorem ovollb 19376
Description: The outer volume is a lower bound on the sum of all interval coverings of  A. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
ovollb.1  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
ovollb  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  -> 
( vol * `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )

Proof of Theorem ovollb
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 449 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  A  C_  U. ran  ( (,)  o.  F ) )
2 ioof 11003 . . . . . . 7  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 simpl 445 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
4 inss2 3563 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
5 ressxr 9130 . . . . . . . . . 10  |-  RR  C_  RR*
6 xpss12 4982 . . . . . . . . . 10  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
75, 5, 6mp2an 655 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
84, 7sstri 3358 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
9 fss 5600 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
103, 8, 9sylancl 645 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
11 fco 5601 . . . . . . 7  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
122, 10, 11sylancr 646 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
13 frn 5598 . . . . . 6  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ran  ( (,)  o.  F )  C_  ~P RR )
1412, 13syl 16 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  ran  ( (,)  o.  F
)  C_  ~P RR )
15 sspwuni 4177 . . . . 5  |-  ( ran  ( (,)  o.  F
)  C_  ~P RR  <->  U.
ran  ( (,)  o.  F )  C_  RR )
1614, 15sylib 190 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  U. ran  ( (,)  o.  F )  C_  RR )
171, 16sstrd 3359 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  A  C_  RR )
18 eqid 2437 . . . 4  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }
1918ovolval 19371 . . 3  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
2017, 19syl 16 . 2  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  -> 
( vol * `  A )  =  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
21 ssrab2 3429 . . 3  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } 
C_  RR*
22 ovollb.1 . . . 4  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
2318, 22elovolmr 19373 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  sup ( ran  S ,  RR* ,  <  )  e. 
{ y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } )
24 infmxrlb 10913 . . 3  |-  ( ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  C_  RR*  /\  sup ( ran  S ,  RR* ,  <  )  e.  {
y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )  ->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  )  <_  sup ( ran  S ,  RR* ,  <  ) )
2521, 23, 24sylancr 646 . 2  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  ->  sup ( { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } ,  RR* ,  `'  <  )  <_  sup ( ran  S ,  RR* ,  <  )
)
2620, 25eqbrtrd 4233 1  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  F ) )  -> 
( vol * `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2707   {crab 2710    i^i cin 3320    C_ wss 3321   ~Pcpw 3800   U.cuni 4016   class class class wbr 4213    X. cxp 4877   `'ccnv 4878   ran crn 4880    o. ccom 4883   -->wf 5451   ` cfv 5455  (class class class)co 6082    ^m cmap 7019   supcsup 7446   RRcr 8990   1c1 8992    + caddc 8994   RR*cxr 9120    < clt 9121    <_ cle 9122    - cmin 9292   NNcn 10001   (,)cioo 10917    seq cseq 11324   abscabs 12040   vol
*covol 19360
This theorem is referenced by:  ovollb2lem  19385  ovolunlem1  19394  ovoliunlem1  19399  ovoliunlem2  19400  ovolscalem1  19410  uniioovol  19472  uniioombllem3  19478  uniioombllem4  19479  uniioombllem5  19480  mblfinlem3  26246  mblfinlem4  26247  ismblfin  26248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-sup 7447  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-ioo 10921  df-ico 10923  df-fz 11045  df-seq 11325  df-exp 11384  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-ovol 19362
  Copyright terms: Public domain W3C validator