MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2lem Unicode version

Theorem ovollb2lem 18847
Description: Lemma for ovollb2 18848. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ovollb2.1  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovollb2.2  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >. )
ovollb2.3  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ovollb2.4  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ovollb2.5  |-  ( ph  ->  A  C_  U. ran  ( [,]  o.  F ) )
ovollb2.6  |-  ( ph  ->  B  e.  RR+ )
ovollb2.7  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
Assertion
Ref Expression
ovollb2lem  |-  ( ph  ->  ( vol * `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) )
Distinct variable groups:    A, n    n, F    B, n    ph, n    S, n
Allowed substitution hints:    T( n)    G( n)

Proof of Theorem ovollb2lem
Dummy variables  m  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovollb2.5 . . . 4  |-  ( ph  ->  A  C_  U. ran  ( [,]  o.  F ) )
2 ovollb2.4 . . . . 5  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3 ovolficcss 18829 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
42, 3syl 15 . . . 4  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  RR )
51, 4sstrd 3189 . . 3  |-  ( ph  ->  A  C_  RR )
6 ovolcl 18837 . . 3  |-  ( A 
C_  RR  ->  ( vol
* `  A )  e.  RR* )
75, 6syl 15 . 2  |-  ( ph  ->  ( vol * `  A )  e.  RR* )
8 ovolfcl 18826 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
92, 8sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
109simp1d 967 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
11 ovollb2.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR+ )
1211rphalfcld 10402 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  /  2
)  e.  RR+ )
1312adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  2 )  e.  RR+ )
14 2nn 9877 . . . . . . . . . . . . . . 15  |-  2  e.  NN
15 nnnn0 9972 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  NN0 )
1615adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
17 nnexpcl 11116 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
1814, 16, 17sylancr 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2 ^ n )  e.  NN )
1918nnrpd 10389 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2 ^ n )  e.  RR+ )
2013, 19rpdivcld 10407 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B  /  2 )  /  ( 2 ^ n ) )  e.  RR+ )
2120rpred 10390 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B  /  2 )  /  ( 2 ^ n ) )  e.  RR )
2210, 21resubcld 9211 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( ( B  /  2 )  / 
( 2 ^ n
) ) )  e.  RR )
239simp2d 968 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
2423, 21readdcld 8862 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  +  ( ( B  /  2 )  / 
( 2 ^ n
) ) )  e.  RR )
2510, 20ltsubrpd 10418 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( ( B  /  2 )  / 
( 2 ^ n
) ) )  < 
( 1st `  ( F `  n )
) )
269simp3d 969 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
2723, 20ltaddrpd 10419 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  <  (
( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) )
2810, 23, 24, 26, 27lelttrd 8974 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <  (
( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) )
2922, 10, 24, 25, 28lttrd 8977 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( ( B  /  2 )  / 
( 2 ^ n
) ) )  < 
( ( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) )
3022, 24, 29ltled 8967 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( ( B  /  2 )  / 
( 2 ^ n
) ) )  <_ 
( ( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) )
31 df-br 4024 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) )  <_  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) )  <->  <. ( ( 1st `  ( F `  n
) )  -  (
( B  /  2
)  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `
 n ) )  +  ( ( B  /  2 )  / 
( 2 ^ n
) ) ) >.  e.  <_  )
3230, 31sylib 188 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  <_  )
33 opelxpi 4721 . . . . . . . . 9  |-  ( ( ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) )  e.  RR  /\  (
( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) )  e.  RR )  ->  <. ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  ( RR  X.  RR ) )
3422, 24, 33syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  ( RR  X.  RR ) )
35 elin 3358 . . . . . . . 8  |-  ( <.
( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  (  <_  i^i  ( RR  X.  RR ) )  <->  ( <. ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  <_  /\ 
<. ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  ( RR  X.  RR ) ) )
3632, 34, 35sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
37 ovollb2.2 . . . . . . 7  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >. )
3836, 37fmptd 5684 . . . . . 6  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
39 eqid 2283 . . . . . . 7  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
40 ovollb2.3 . . . . . . 7  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
4139, 40ovolsf 18832 . . . . . 6  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) 
+oo ) )
4238, 41syl 15 . . . . 5  |-  ( ph  ->  T : NN --> ( 0 [,)  +oo ) )
43 frn 5395 . . . . 5  |-  ( T : NN --> ( 0 [,)  +oo )  ->  ran  T 
C_  ( 0 [,) 
+oo ) )
4442, 43syl 15 . . . 4  |-  ( ph  ->  ran  T  C_  (
0 [,)  +oo ) )
45 icossxr 10734 . . . 4  |-  ( 0 [,)  +oo )  C_  RR*
4644, 45syl6ss 3191 . . 3  |-  ( ph  ->  ran  T  C_  RR* )
47 supxrcl 10633 . . 3  |-  ( ran 
T  C_  RR*  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR* )
4846, 47syl 15 . 2  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR* )
49 ovollb2.7 . . . 4  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
5011rpred 10390 . . . 4  |-  ( ph  ->  B  e.  RR )
5149, 50readdcld 8862 . . 3  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  +  B )  e.  RR )
5251rexrd 8881 . 2  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  +  B )  e. 
RR* )
53 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
5453fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  ( 1st `  ( F `  n ) )  =  ( 1st `  ( F `  m )
) )
55 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (
2 ^ n )  =  ( 2 ^ m ) )
5655oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
( B  /  2
)  /  ( 2 ^ n ) )  =  ( ( B  /  2 )  / 
( 2 ^ m
) ) )
5754, 56oveq12d 5876 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) )  =  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) )
5853fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  ( 2nd `  ( F `  n ) )  =  ( 2nd `  ( F `  m )
) )
5958, 56oveq12d 5876 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
( 2nd `  ( F `  n )
)  +  ( ( B  /  2 )  /  ( 2 ^ n ) ) )  =  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) )
6057, 59opeq12d 3804 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  <. (
( 1st `  ( F `  n )
)  -  ( ( B  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( B  /  2
)  /  ( 2 ^ n ) ) ) >.  =  <. ( ( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) >. )
61 opex 4237 . . . . . . . . . . . . . . 15  |-  <. (
( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) >.  e.  _V
6260, 37, 61fvmpt 5602 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  ( G `  m )  =  <. ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `
 m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) ) >.
)
6362adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  = 
<. ( ( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) >. )
6463fveq2d 5529 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( G `  m
) )  =  ( 1st `  <. (
( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) >. ) )
65 ovex 5883 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 m ) )  -  ( ( B  /  2 )  / 
( 2 ^ m
) ) )  e. 
_V
66 ovex 5883 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( F `
 m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) )  e. 
_V
6765, 66op1st 6128 . . . . . . . . . . . 12  |-  ( 1st `  <. ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `
 m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) ) >.
)  =  ( ( 1st `  ( F `
 m ) )  -  ( ( B  /  2 )  / 
( 2 ^ m
) ) )
6864, 67syl6eq 2331 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( G `  m
) )  =  ( ( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) )
69 ovolfcl 18826 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  (
( 1st `  ( F `  m )
)  e.  RR  /\  ( 2nd `  ( F `
 m ) )  e.  RR  /\  ( 1st `  ( F `  m ) )  <_ 
( 2nd `  ( F `  m )
) ) )
702, 69sylan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( F `
 m ) )  e.  RR  /\  ( 2nd `  ( F `  m ) )  e.  RR  /\  ( 1st `  ( F `  m
) )  <_  ( 2nd `  ( F `  m ) ) ) )
7170simp1d 967 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( F `  m
) )  e.  RR )
7212adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  /  2 )  e.  RR+ )
73 nnnn0 9972 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  NN0 )
7473adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
NN0 )
75 nnexpcl 11116 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
7614, 74, 75sylancr 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2 ^ m )  e.  NN )
7776nnrpd 10389 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2 ^ m )  e.  RR+ )
7872, 77rpdivcld 10407 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( B  /  2 )  /  ( 2 ^ m ) )  e.  RR+ )
7971, 78ltsubrpd 10418 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( F `
 m ) )  -  ( ( B  /  2 )  / 
( 2 ^ m
) ) )  < 
( 1st `  ( F `  m )
) )
8068, 79eqbrtrd 4043 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( G `  m
) )  <  ( 1st `  ( F `  m ) ) )
8180adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 1st `  ( G `  m ) )  < 
( 1st `  ( F `  m )
) )
82 ovolfcl 18826 . . . . . . . . . . . . 13  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  (
( 1st `  ( G `  m )
)  e.  RR  /\  ( 2nd `  ( G `
 m ) )  e.  RR  /\  ( 1st `  ( G `  m ) )  <_ 
( 2nd `  ( G `  m )
) ) )
8338, 82sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( G `
 m ) )  e.  RR  /\  ( 2nd `  ( G `  m ) )  e.  RR  /\  ( 1st `  ( G `  m
) )  <_  ( 2nd `  ( G `  m ) ) ) )
8483simp1d 967 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( G `  m
) )  e.  RR )
8584adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 1st `  ( G `  m ) )  e.  RR )
8671adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 1st `  ( F `  m ) )  e.  RR )
875sselda 3180 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  RR )
8887adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  z  e.  RR )
89 ltletr 8913 . . . . . . . . . 10  |-  ( ( ( 1st `  ( G `  m )
)  e.  RR  /\  ( 1st `  ( F `
 m ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( 1st `  ( G `  m )
)  <  ( 1st `  ( F `  m
) )  /\  ( 1st `  ( F `  m ) )  <_ 
z )  ->  ( 1st `  ( G `  m ) )  < 
z ) )
9085, 86, 88, 89syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  (
( ( 1st `  ( G `  m )
)  <  ( 1st `  ( F `  m
) )  /\  ( 1st `  ( F `  m ) )  <_ 
z )  ->  ( 1st `  ( G `  m ) )  < 
z ) )
9181, 90mpand 656 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  (
( 1st `  ( F `  m )
)  <_  z  ->  ( 1st `  ( G `
 m ) )  <  z ) )
9270simp2d 968 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m
) )  e.  RR )
9392, 78ltaddrpd 10419 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m
) )  <  (
( 2nd `  ( F `  m )
)  +  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) )
9463fveq2d 5529 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( G `  m
) )  =  ( 2nd `  <. (
( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) >. ) )
9565, 66op2nd 6129 . . . . . . . . . . . 12  |-  ( 2nd `  <. ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `
 m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) ) >.
)  =  ( ( 2nd `  ( F `
 m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) )
9694, 95syl6eq 2331 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( G `  m
) )  =  ( ( 2nd `  ( F `  m )
)  +  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) )
9793, 96breqtrrd 4049 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m
) )  <  ( 2nd `  ( G `  m ) ) )
9897adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m ) )  < 
( 2nd `  ( G `  m )
) )
9992adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m ) )  e.  RR )
10083simp2d 968 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( G `  m
) )  e.  RR )
101100adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  ( 2nd `  ( G `  m ) )  e.  RR )
102 lelttr 8912 . . . . . . . . . 10  |-  ( ( z  e.  RR  /\  ( 2nd `  ( F `
 m ) )  e.  RR  /\  ( 2nd `  ( G `  m ) )  e.  RR )  ->  (
( z  <_  ( 2nd `  ( F `  m ) )  /\  ( 2nd `  ( F `
 m ) )  <  ( 2nd `  ( G `  m )
) )  ->  z  <  ( 2nd `  ( G `  m )
) ) )
10388, 99, 101, 102syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  (
( z  <_  ( 2nd `  ( F `  m ) )  /\  ( 2nd `  ( F `
 m ) )  <  ( 2nd `  ( G `  m )
) )  ->  z  <  ( 2nd `  ( G `  m )
) ) )
10498, 103mpan2d 655 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  (
z  <_  ( 2nd `  ( F `  m
) )  ->  z  <  ( 2nd `  ( G `  m )
) ) )
10591, 104anim12d 546 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  m  e.  NN )  ->  (
( ( 1st `  ( F `  m )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  m )
) )  ->  (
( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
106105reximdva 2655 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  ( E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  m )
) )  ->  E. m  e.  NN  ( ( 1st `  ( G `  m
) )  <  z  /\  z  <  ( 2nd `  ( G `  m
) ) ) ) )
107106ralimdva 2621 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m
) )  <_  z  /\  z  <_  ( 2nd `  ( F `  m
) ) )  ->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
108 ovolficc 18828 . . . . . 6  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( [,]  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  m )
) ) ) )
1095, 2, 108syl2anc 642 . . . . 5  |-  ( ph  ->  ( A  C_  U. ran  ( [,]  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <_  z  /\  z  <_  ( 2nd `  ( F `  m )
) ) ) )
110 ovolfioo 18827 . . . . . 6  |-  ( ( A  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
1115, 38, 110syl2anc 642 . . . . 5  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
112107, 109, 1113imtr4d 259 . . . 4  |-  ( ph  ->  ( A  C_  U. ran  ( [,]  o.  F )  ->  A  C_  U. ran  ( (,)  o.  G ) ) )
1131, 112mpd 14 . . 3  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  G ) )
11440ovollb 18838 . . 3  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( (,)  o.  G ) )  -> 
( vol * `  A )  <_  sup ( ran  T ,  RR* ,  <  ) )
11538, 113, 114syl2anc 642 . 2  |-  ( ph  ->  ( vol * `  A )  <_  sup ( ran  T ,  RR* ,  <  ) )
11640fveq1i 5526 . . . . . . 7  |-  ( T `
 k )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) `  k )
117 fzfid 11035 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1 ... k )  e. 
Fin )
118 0re 8838 . . . . . . . . . . . 12  |-  0  e.  RR
119 pnfxr 10455 . . . . . . . . . . . 12  |-  +oo  e.  RR*
120 icossre 10730 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
121118, 119, 120mp2an 653 . . . . . . . . . . 11  |-  ( 0 [,)  +oo )  C_  RR
122 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
123122ovolfsf 18831 . . . . . . . . . . . . . 14  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,)  +oo ) )
1242, 123syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
) : NN --> ( 0 [,)  +oo ) )
125124adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs  o.  -  )  o.  F ) : NN --> ( 0 [,)  +oo ) )
126 elfznn 10819 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
127 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( ( ( abs  o.  -  )  o.  F
) : NN --> ( 0 [,)  +oo )  /\  m  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  e.  ( 0 [,)  +oo ) )
128125, 126, 127syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  e.  ( 0 [,)  +oo ) )
129121, 128sseldi 3178 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  e.  RR )
130129recnd 8861 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  e.  CC )
13111adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  B  e.  RR+ )
132131, 77rpdivcld 10407 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  /  ( 2 ^ m ) )  e.  RR+ )
133132rpcnd 10392 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  /  ( 2 ^ m ) )  e.  CC )
134126, 133sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... k
) )  ->  ( B  /  ( 2 ^ m ) )  e.  CC )
135134adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  ( B  /  ( 2 ^ m ) )  e.  CC )
136117, 130, 135fsumadd 12211 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( ( ( abs  o.  -  )  o.  F ) `  m )  +  ( B  /  ( 2 ^ m ) ) )  =  ( sum_ m  e.  ( 1 ... k ) ( ( ( abs  o.  -  )  o.  F ) `  m )  +  sum_ m  e.  ( 1 ... k ) ( B  /  ( 2 ^ m ) ) ) )
13739ovolfsval 18830 . . . . . . . . . . . . 13  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  m )  =  ( ( 2nd `  ( G `  m
) )  -  ( 1st `  ( G `  m ) ) ) )
13838, 137sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  m )  =  ( ( 2nd `  ( G `  m )
)  -  ( 1st `  ( G `  m
) ) ) )
13992recnd 8861 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2nd `  ( F `  m
) )  e.  CC )
14078rpcnd 10392 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( B  /  2 )  /  ( 2 ^ m ) )  e.  CC )
14171recnd 8861 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1st `  ( F `  m
) )  e.  CC )
142141, 140subcld 9157 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 1st `  ( F `
 m ) )  -  ( ( B  /  2 )  / 
( 2 ^ m
) ) )  e.  CC )
143139, 140, 142addsubassd 9177 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 2nd `  ( F `  m )
)  +  ( ( B  /  2 )  /  ( 2 ^ m ) ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) )  =  ( ( 2nd `  ( F `  m )
)  +  ( ( ( B  /  2
)  /  ( 2 ^ m ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ) ) )
14496, 68oveq12d 5876 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2nd `  ( G `
 m ) )  -  ( 1st `  ( G `  m )
) )  =  ( ( ( 2nd `  ( F `  m )
)  +  ( ( B  /  2 )  /  ( 2 ^ m ) ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ) )
145139, 141, 133subadd23d 9179 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 2nd `  ( F `  m )
)  -  ( 1st `  ( F `  m
) ) )  +  ( B  /  (
2 ^ m ) ) )  =  ( ( 2nd `  ( F `  m )
)  +  ( ( B  /  ( 2 ^ m ) )  -  ( 1st `  ( F `  m )
) ) ) )
146122ovolfsval 18830 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  m  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  =  ( ( 2nd `  ( F `  m
) )  -  ( 1st `  ( F `  m ) ) ) )
1472, 146sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  m )  =  ( ( 2nd `  ( F `  m )
)  -  ( 1st `  ( F `  m
) ) ) )
148147oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  F
) `  m )  +  ( B  / 
( 2 ^ m
) ) )  =  ( ( ( 2nd `  ( F `  m
) )  -  ( 1st `  ( F `  m ) ) )  +  ( B  / 
( 2 ^ m
) ) ) )
149140, 141, 140subsub3d 9187 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( B  /  2
)  /  ( 2 ^ m ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) )  =  ( ( ( ( B  /  2 )  / 
( 2 ^ m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) )  -  ( 1st `  ( F `  m
) ) ) )
15072rpcnd 10392 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( B  /  2 )  e.  CC )
15176nncnd 9762 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2 ^ m )  e.  CC )
15276nnne0d 9790 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2 ^ m )  =/=  0 )
153150, 150, 151, 152divdird 9574 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( B  /  2
)  +  ( B  /  2 ) )  /  ( 2 ^ m ) )  =  ( ( ( B  /  2 )  / 
( 2 ^ m
) )  +  ( ( B  /  2
)  /  ( 2 ^ m ) ) ) )
154131rpcnd 10392 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  m  e.  NN )  ->  B  e.  CC )
1551542halvesd 9957 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( B  /  2 )  +  ( B  / 
2 ) )  =  B )
156155oveq1d 5873 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( B  /  2
)  +  ( B  /  2 ) )  /  ( 2 ^ m ) )  =  ( B  /  (
2 ^ m ) ) )
157153, 156eqtr3d 2317 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( B  /  2
)  /  ( 2 ^ m ) )  +  ( ( B  /  2 )  / 
( 2 ^ m
) ) )  =  ( B  /  (
2 ^ m ) ) )
158157oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( B  / 
2 )  /  (
2 ^ m ) )  +  ( ( B  /  2 )  /  ( 2 ^ m ) ) )  -  ( 1st `  ( F `  m )
) )  =  ( ( B  /  (
2 ^ m ) )  -  ( 1st `  ( F `  m
) ) ) )
159149, 158eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( B  /  2
)  /  ( 2 ^ m ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) )  =  ( ( B  /  (
2 ^ m ) )  -  ( 1st `  ( F `  m
) ) ) )
160159oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2nd `  ( F `
 m ) )  +  ( ( ( B  /  2 )  /  ( 2 ^ m ) )  -  ( ( 1st `  ( F `  m )
)  -  ( ( B  /  2 )  /  ( 2 ^ m ) ) ) ) )  =  ( ( 2nd `  ( F `  m )
)  +  ( ( B  /  ( 2 ^ m ) )  -  ( 1st `  ( F `  m )
) ) ) )
161145, 148, 1603eqtr4d 2325 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  F
) `  m )  +  ( B  / 
( 2 ^ m
) ) )  =  ( ( 2nd `  ( F `  m )
)  +  ( ( ( B  /  2
)  /  ( 2 ^ m ) )  -  ( ( 1st `  ( F `  m
) )  -  (
( B  /  2
)  /  ( 2 ^ m ) ) ) ) ) )
162143, 144, 1613eqtr4d 2325 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2nd `  ( G `
 m ) )  -  ( 1st `  ( G `  m )
) )  =  ( ( ( ( abs 
o.  -  )  o.  F ) `  m
)  +  ( B  /  ( 2 ^ m ) ) ) )
163138, 162eqtrd 2315 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  m )  =  ( ( ( ( abs 
o.  -  )  o.  F ) `  m
)  +  ( B  /  ( 2 ^ m ) ) ) )
164126, 163sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  m )  =  ( ( ( ( abs  o.  -  )  o.  F ) `  m )  +  ( B  /  ( 2 ^ m ) ) ) )
165164adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  m )  =  ( ( ( ( abs  o.  -  )  o.  F ) `  m )  +  ( B  /  ( 2 ^ m ) ) ) )
166 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
167 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
168166, 167syl6eleq 2373 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
169130, 135addcld 8854 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( ( abs 
o.  -  )  o.  F ) `  m
)  +  ( B  /  ( 2 ^ m ) ) )  e.  CC )
170165, 168, 169fsumser 12203 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( ( ( abs  o.  -  )  o.  F ) `  m )  +  ( B  /  ( 2 ^ m ) ) )  =  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  k
) )
171 eqidd 2284 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  m )  =  ( ( ( abs  o.  -  )  o.  F ) `  m
) )
172171, 168, 130fsumser 12203 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( ( abs  o.  -  )  o.  F ) `  m
)  =  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  k
) )
173 ovollb2.1 . . . . . . . . . . 11  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
174173fveq1i 5526 . . . . . . . . . 10  |-  ( S `
 k )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  k )
175172, 174syl6eqr 2333 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( ( abs  o.  -  )  o.  F ) `  m
)  =  ( S `
 k ) )
17611adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  RR+ )
177176rpcnd 10392 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
178 geo2sum 12329 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  B  e.  CC )  -> 
sum_ m  e.  (
1 ... k ) ( B  /  ( 2 ^ m ) )  =  ( B  -  ( B  /  (
2 ^ k ) ) ) )
179166, 177, 178syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( B  / 
( 2 ^ m
) )  =  ( B  -  ( B  /  ( 2 ^ k ) ) ) )
180175, 179oveq12d 5876 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( sum_ m  e.  ( 1 ... k ) ( ( ( abs  o.  -  )  o.  F ) `  m )  +  sum_ m  e.  ( 1 ... k ) ( B  /  ( 2 ^ m ) ) )  =  ( ( S `
 k )  +  ( B  -  ( B  /  ( 2 ^ k ) ) ) ) )
181136, 170, 1803eqtr3d 2323 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  k
)  =  ( ( S `  k )  +  ( B  -  ( B  /  (
2 ^ k ) ) ) ) )
182116, 181syl5eq 2327 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( T `
 k )  =  ( ( S `  k )  +  ( B  -  ( B  /  ( 2 ^ k ) ) ) ) )
183122, 173ovolsf 18832 . . . . . . . . . 10  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) 
+oo ) )
1842, 183syl 15 . . . . . . . . 9  |-  ( ph  ->  S : NN --> ( 0 [,)  +oo ) )
185 ffvelrn 5663 . . . . . . . . 9  |-  ( ( S : NN --> ( 0 [,)  +oo )  /\  k  e.  NN )  ->  ( S `  k )  e.  ( 0 [,)  +oo ) )
186184, 185sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e.  ( 0 [,)  +oo ) )
187121, 186sseldi 3178 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e.  RR )
188176rpred 10390 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  RR )
189 nnnn0 9972 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  NN0 )
190189adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
191 nnexpcl 11116 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
19214, 190, 191sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  NN )
193192nnrpd 10389 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  RR+ )
194176, 193rpdivcld 10407 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( 2 ^ k ) )  e.  RR+ )
195194rpred 10390 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( 2 ^ k ) )  e.  RR )
196188, 195resubcld 9211 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  -  ( B  / 
( 2 ^ k
) ) )  e.  RR )
19749adantr 451 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
198 frn 5395 . . . . . . . . . . 11  |-  ( S : NN --> ( 0 [,)  +oo )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
199184, 198syl 15 . . . . . . . . . 10  |-  ( ph  ->  ran  S  C_  (
0 [,)  +oo ) )
200199, 45syl6ss 3191 . . . . . . . . 9  |-  ( ph  ->  ran  S  C_  RR* )
201200adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ran  S  C_ 
RR* )
202 ffn 5389 . . . . . . . . . 10  |-  ( S : NN --> ( 0 [,)  +oo )  ->  S  Fn  NN )
203184, 202syl 15 . . . . . . . . 9  |-  ( ph  ->  S  Fn  NN )
204 fnfvelrn 5662 . . . . . . . . 9  |-  ( ( S  Fn  NN  /\  k  e.  NN )  ->  ( S `  k
)  e.  ran  S
)
205203, 204sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e. 
ran  S )
206 supxrub 10643 . . . . . . . 8  |-  ( ( ran  S  C_  RR*  /\  ( S `  k )  e.  ran  S )  -> 
( S `  k
)  <_  sup ( ran  S ,  RR* ,  <  ) )
207201, 205, 206syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  <_  sup ( ran  S ,  RR* ,  <  ) )
208188, 194ltsubrpd 10418 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  -  ( B  / 
( 2 ^ k
) ) )  < 
B )
209196, 188, 208ltled 8967 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  -  ( B  / 
( 2 ^ k
) ) )  <_  B )
210187, 196, 197, 188, 207, 209le2addd 9390 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( S `  k )  +  ( B  -  ( B  /  (
2 ^ k ) ) ) )  <_ 
( sup ( ran 
S ,  RR* ,  <  )  +  B ) )
211182, 210eqbrtrd 4043 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( T `
 k )  <_ 
( sup ( ran 
S ,  RR* ,  <  )  +  B ) )
212211ralrimiva 2626 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( T `  k )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) )
213 ffn 5389 . . . . 5  |-  ( T : NN --> ( 0 [,)  +oo )  ->  T  Fn  NN )
214 breq1 4026 . . . . . 6  |-  ( y  =  ( T `  k )  ->  (
y  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B
)  <->  ( T `  k )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) ) )
215214ralrn 5668 . . . . 5  |-  ( T  Fn  NN  ->  ( A. y  e.  ran  T  y  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B
)  <->  A. k  e.  NN  ( T `  k )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) ) )
21642, 213, 2153syl 18 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  T  y  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B )  <->  A. k  e.  NN  ( T `  k )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) ) )
217212, 216mpbird 223 . . 3  |-  ( ph  ->  A. y  e.  ran  T  y  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B
) )
218 supxrleub 10645 . . . 4  |-  ( ( ran  T  C_  RR*  /\  ( sup ( ran  S ,  RR* ,  <  )  +  B )  e.  RR* )  ->  ( sup ( ran  T ,  RR* ,  <  )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B )  <->  A. y  e.  ran  T  y  <_ 
( sup ( ran 
S ,  RR* ,  <  )  +  B ) ) )
21946, 52, 218syl2anc 642 . . 3  |-  ( ph  ->  ( sup ( ran 
T ,  RR* ,  <  )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B )  <->  A. y  e.  ran  T  y  <_ 
( sup ( ran 
S ,  RR* ,  <  )  +  B ) ) )
220217, 219mpbird 223 . 2  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( sup ( ran 
S ,  RR* ,  <  )  +  B ) )
2217, 48, 52, 115, 220xrletrd 10493 1  |-  ( ph  ->  ( vol * `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   <.cop 3643   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ran crn 4690    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZ>=cuz 10230   RR+crp 10354   (,)cioo 10656   [,)cico 10658   [,]cicc 10659   ...cfz 10782    seq cseq 11046   ^cexp 11104   abscabs 11719   sum_csu 12158   vol
*covol 18822
This theorem is referenced by:  ovollb2  18848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ovol 18824
  Copyright terms: Public domain W3C validator