MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem1 Unicode version

Theorem ovolscalem1 19370
Description: Lemma for ovolsca 19372. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolsca.1  |-  ( ph  ->  A  C_  RR )
ovolsca.2  |-  ( ph  ->  C  e.  RR+ )
ovolsca.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
ovolsca.4  |-  ( ph  ->  ( vol * `  A )  e.  RR )
ovolsca.5  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolsca.6  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >. )
ovolsca.7  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ovolsca.8  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
ovolsca.9  |-  ( ph  ->  R  e.  RR+ )
ovolsca.10  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( C  x.  R ) ) )
Assertion
Ref Expression
ovolscalem1  |-  ( ph  ->  ( vol * `  B )  <_  (
( ( vol * `  A )  /  C
)  +  R ) )
Distinct variable groups:    x, n, A    B, n    n, F, x    n, G    x, R    C, n, x    ph, n    x, S
Allowed substitution hints:    ph( x)    B( x)    R( n)    S( n)    G( x)

Proof of Theorem ovolscalem1
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.3 . . . 4  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
2 ssrab2 3396 . . . 4  |-  { x  e.  RR  |  ( C  x.  x )  e.  A }  C_  RR
31, 2syl6eqss 3366 . . 3  |-  ( ph  ->  B  C_  RR )
4 ovolcl 19335 . . 3  |-  ( B 
C_  RR  ->  ( vol
* `  B )  e.  RR* )
53, 4syl 16 . 2  |-  ( ph  ->  ( vol * `  B )  e.  RR* )
6 ovolsca.7 . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
7 ovolfcl 19324 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
86, 7sylan 458 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
98simp3d 971 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
108simp1d 969 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
118simp2d 970 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
12 ovolsca.2 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  RR+ )
1312rpregt0d 10618 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  RR  /\  0  <  C ) )
1413adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( C  e.  RR  /\  0  <  C ) )
15 lediv1 9839 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( 1st `  ( F `  n )
)  <_  ( 2nd `  ( F `  n
) )  <->  ( ( 1st `  ( F `  n ) )  /  C )  <_  (
( 2nd `  ( F `  n )
)  /  C ) ) )
1610, 11, 14, 15syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  <_  ( 2nd `  ( F `  n )
)  <->  ( ( 1st `  ( F `  n
) )  /  C
)  <_  ( ( 2nd `  ( F `  n ) )  /  C ) ) )
179, 16mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  /  C )  <_ 
( ( 2nd `  ( F `  n )
)  /  C ) )
18 df-br 4181 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  n )
)  /  C )  <_  ( ( 2nd `  ( F `  n
) )  /  C
)  <->  <. ( ( 1st `  ( F `  n
) )  /  C
) ,  ( ( 2nd `  ( F `
 n ) )  /  C ) >.  e.  <_  )
1917, 18sylib 189 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  <_  )
2012adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  C  e.  RR+ )
2110, 20rerpdivcld 10639 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  /  C )  e.  RR )
2211, 20rerpdivcld 10639 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  /  C )  e.  RR )
23 opelxpi 4877 . . . . . . . . 9  |-  ( ( ( ( 1st `  ( F `  n )
)  /  C )  e.  RR  /\  (
( 2nd `  ( F `  n )
)  /  C )  e.  RR )  ->  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  ( RR 
X.  RR ) )
2421, 22, 23syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  ( RR 
X.  RR ) )
25 elin 3498 . . . . . . . 8  |-  ( <.
( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) )  <->  ( <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  <_  /\  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  ( RR 
X.  RR ) ) )
2619, 24, 25sylanbrc 646 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
27 ovolsca.6 . . . . . . 7  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >. )
2826, 27fmptd 5860 . . . . . 6  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
29 eqid 2412 . . . . . . 7  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
30 eqid 2412 . . . . . . 7  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)
3129, 30ovolsf 19330 . . . . . 6  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) : NN --> ( 0 [,)  +oo ) )
3228, 31syl 16 . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) : NN --> ( 0 [,) 
+oo ) )
33 frn 5564 . . . . 5  |-  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) : NN --> ( 0 [,)  +oo )  ->  ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
)  C_  ( 0 [,)  +oo ) )
3432, 33syl 16 . . . 4  |-  ( ph  ->  ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  C_  ( 0 [,)  +oo ) )
35 icossxr 10959 . . . 4  |-  ( 0 [,)  +oo )  C_  RR*
3634, 35syl6ss 3328 . . 3  |-  ( ph  ->  ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  C_  RR* )
37 supxrcl 10857 . . 3  |-  ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  C_  RR* 
->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  e.  RR* )
3836, 37syl 16 . 2  |-  ( ph  ->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  e.  RR* )
39 ovolsca.4 . . . . 5  |-  ( ph  ->  ( vol * `  A )  e.  RR )
4039, 12rerpdivcld 10639 . . . 4  |-  ( ph  ->  ( ( vol * `  A )  /  C
)  e.  RR )
41 ovolsca.9 . . . . 5  |-  ( ph  ->  R  e.  RR+ )
4241rpred 10612 . . . 4  |-  ( ph  ->  R  e.  RR )
4340, 42readdcld 9079 . . 3  |-  ( ph  ->  ( ( ( vol
* `  A )  /  C )  +  R
)  e.  RR )
4443rexrd 9098 . 2  |-  ( ph  ->  ( ( ( vol
* `  A )  /  C )  +  R
)  e.  RR* )
451eleq2d 2479 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  <->  y  e.  { x  e.  RR  |  ( C  x.  x )  e.  A } ) )
46 oveq2 6056 . . . . . . . . 9  |-  ( x  =  y  ->  ( C  x.  x )  =  ( C  x.  y ) )
4746eleq1d 2478 . . . . . . . 8  |-  ( x  =  y  ->  (
( C  x.  x
)  e.  A  <->  ( C  x.  y )  e.  A
) )
4847elrab 3060 . . . . . . 7  |-  ( y  e.  { x  e.  RR  |  ( C  x.  x )  e.  A }  <->  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )
4945, 48syl6bb 253 . . . . . 6  |-  ( ph  ->  ( y  e.  B  <->  ( y  e.  RR  /\  ( C  x.  y
)  e.  A ) ) )
50 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )  -> 
( C  x.  y
)  e.  A )
51 ovolsca.8 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
52 ovolsca.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  RR )
53 ovolfioo 19325 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
5452, 6, 53syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
5551, 54mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
5655adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )  ->  A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) )
57 breq2 4184 . . . . . . . . . . . 12  |-  ( x  =  ( C  x.  y )  ->  (
( 1st `  ( F `  n )
)  <  x  <->  ( 1st `  ( F `  n
) )  <  ( C  x.  y )
) )
58 breq1 4183 . . . . . . . . . . . 12  |-  ( x  =  ( C  x.  y )  ->  (
x  <  ( 2nd `  ( F `  n
) )  <->  ( C  x.  y )  <  ( 2nd `  ( F `  n ) ) ) )
5957, 58anbi12d 692 . . . . . . . . . . 11  |-  ( x  =  ( C  x.  y )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  ( ( 1st `  ( F `  n ) )  < 
( C  x.  y
)  /\  ( C  x.  y )  <  ( 2nd `  ( F `  n ) ) ) ) )
6059rexbidv 2695 . . . . . . . . . 10  |-  ( x  =  ( C  x.  y )  ->  ( E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  <->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  ( C  x.  y )  /\  ( C  x.  y
)  <  ( 2nd `  ( F `  n
) ) ) ) )
6160rspcv 3016 . . . . . . . . 9  |-  ( ( C  x.  y )  e.  A  ->  ( A. x  e.  A  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  ( C  x.  y )  /\  ( C  x.  y
)  <  ( 2nd `  ( F `  n
) ) ) ) )
6250, 56, 61sylc 58 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  ( C  x.  y )  /\  ( C  x.  y )  <  ( 2nd `  ( F `  n )
) ) )
63 opex 4395 . . . . . . . . . . . . . . . 16  |-  <. (
( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  _V
6427fvmpt2 5779 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  <.
( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >.  e.  _V )  ->  ( G `  n
)  =  <. (
( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >. )
6563, 64mpan2 653 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( G `  n )  =  <. ( ( 1st `  ( F `  n
) )  /  C
) ,  ( ( 2nd `  ( F `
 n ) )  /  C ) >.
)
6665fveq2d 5699 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( 1st `  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >. ) )
67 ovex 6073 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( F `
 n ) )  /  C )  e. 
_V
68 ovex 6073 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( F `
 n ) )  /  C )  e. 
_V
6967, 68op1st 6322 . . . . . . . . . . . . . 14  |-  ( 1st `  <. ( ( 1st `  ( F `  n
) )  /  C
) ,  ( ( 2nd `  ( F `
 n ) )  /  C ) >.
)  =  ( ( 1st `  ( F `
 n ) )  /  C )
7066, 69syl6eq 2460 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  /  C ) )
7170adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  /  C ) )
7271breq1d 4190 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( G `  n )
)  <  y  <->  ( ( 1st `  ( F `  n ) )  /  C )  <  y
) )
7310adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  ( 1st `  ( F `  n ) )  e.  RR )
74 simplrl 737 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  y  e.  RR )
7514adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  ( C  e.  RR  /\  0  <  C ) )
76 ltdivmul 9846 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  n )
)  e.  RR  /\  y  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( ( 1st `  ( F `  n
) )  /  C
)  <  y  <->  ( 1st `  ( F `  n
) )  <  ( C  x.  y )
) )
7773, 74, 75, 76syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  /  C )  <  y  <->  ( 1st `  ( F `  n
) )  <  ( C  x.  y )
) )
7872, 77bitr2d 246 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  ( C  x.  y )  <->  ( 1st `  ( G `  n
) )  <  y
) )
7911adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n ) )  e.  RR )
80 ltmuldiv2 9845 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  y )  <  ( 2nd `  ( F `  n ) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  /  C ) ) )
8174, 79, 75, 80syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( C  x.  y
)  <  ( 2nd `  ( F `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  /  C ) ) )
8265fveq2d 5699 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  <. ( ( 1st `  ( F `  n )
)  /  C ) ,  ( ( 2nd `  ( F `  n
) )  /  C
) >. ) )
8367, 68op2nd 6323 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  /  C
) ,  ( ( 2nd `  ( F `
 n ) )  /  C ) >.
)  =  ( ( 2nd `  ( F `
 n ) )  /  C )
8482, 83syl6eq 2460 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  /  C ) )
8584adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  ( ( 2nd `  ( F `  n )
)  /  C ) )
8685breq2d 4192 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
y  <  ( 2nd `  ( G `  n
) )  <->  y  <  ( ( 2nd `  ( F `  n )
)  /  C ) ) )
8781, 86bitr4d 248 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( C  x.  y
)  <  ( 2nd `  ( F `  n
) )  <->  y  <  ( 2nd `  ( G `
 n ) ) ) )
8878, 87anbi12d 692 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR  /\  ( C  x.  y
)  e.  A ) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  <  ( C  x.  y )  /\  ( C  x.  y )  <  ( 2nd `  ( F `  n )
) )  <->  ( ( 1st `  ( G `  n ) )  < 
y  /\  y  <  ( 2nd `  ( G `
 n ) ) ) ) )
8988rexbidva 2691 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )  -> 
( E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  ( C  x.  y )  /\  ( C  x.  y
)  <  ( 2nd `  ( F `  n
) ) )  <->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) ) ) )
9062, 89mpbid 202 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR  /\  ( C  x.  y )  e.  A ) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
9190ex 424 . . . . . 6  |-  ( ph  ->  ( ( y  e.  RR  /\  ( C  x.  y )  e.  A )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <  y  /\  y  <  ( 2nd `  ( G `  n
) ) ) ) )
9249, 91sylbid 207 . . . . 5  |-  ( ph  ->  ( y  e.  B  ->  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9392ralrimiv 2756 . . . 4  |-  ( ph  ->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) )
94 ovolfioo 19325 . . . . 5  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
953, 28, 94syl2anc 643 . . . 4  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. y  e.  B  E. n  e.  NN  ( ( 1st `  ( G `  n )
)  <  y  /\  y  <  ( 2nd `  ( G `  n )
) ) ) )
9693, 95mpbird 224 . . 3  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
9730ovollb 19336 . . 3  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  B  C_ 
U. ran  ( (,)  o.  G ) )  -> 
( vol * `  B )  <_  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) , 
RR* ,  <  ) )
9828, 96, 97syl2anc 643 . 2  |-  ( ph  ->  ( vol * `  B )  <_  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) , 
RR* ,  <  ) )
99 fzfid 11275 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1 ... k )  e. 
Fin )
10012rpcnd 10614 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
101100adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  C  e.  CC )
102 simpl 444 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ph )
103 elfznn 11044 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... k )  ->  n  e.  NN )
10411, 10resubcld 9429 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  e.  RR )
105102, 103, 104syl2an 464 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  e.  RR )
106105recnd 9078 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  e.  CC )
10712rpne0d 10617 . . . . . . . . 9  |-  ( ph  ->  C  =/=  0 )
108107adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  C  =/=  0 )
10999, 101, 106, 108fsumdivc 12532 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( sum_ n  e.  ( 1 ... k ) ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
)  =  sum_ n  e.  ( 1 ... k
) ( ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
) )
11084, 70oveq12d 6066 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) )  =  ( ( ( 2nd `  ( F `  n
) )  /  C
)  -  ( ( 1st `  ( F `
 n ) )  /  C ) ) )
111110adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  -  ( 1st `  ( G `  n )
) )  =  ( ( ( 2nd `  ( F `  n )
)  /  C )  -  ( ( 1st `  ( F `  n
) )  /  C
) ) )
11229ovolfsval 19328 . . . . . . . . . . 11  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( 2nd `  ( G `  n
) )  -  ( 1st `  ( G `  n ) ) ) )
11328, 112sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( 2nd `  ( G `  n )
)  -  ( 1st `  ( G `  n
) ) ) )
11411recnd 9078 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  CC )
11510recnd 9078 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  CC )
11612rpcnne0d 10621 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  CC  /\  C  =/=  0 ) )
117116adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
118 divsubdir 9674 . . . . . . . . . . 11  |-  ( ( ( 2nd `  ( F `  n )
)  e.  CC  /\  ( 1st `  ( F `
 n ) )  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  /  C )  =  ( ( ( 2nd `  ( F `  n
) )  /  C
)  -  ( ( 1st `  ( F `
 n ) )  /  C ) ) )
119114, 115, 117, 118syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C )  =  ( ( ( 2nd `  ( F `  n )
)  /  C )  -  ( ( 1st `  ( F `  n
) )  /  C
) ) )
120111, 113, 1193eqtr4d 2454 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C ) )
121102, 103, 120syl2an 464 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  =  ( ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
) )
122 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
123 nnuz 10485 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
124122, 123syl6eleq 2502 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
125104, 20rerpdivcld 10639 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C )  e.  RR )
126125recnd 9078 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C )  e.  CC )
127102, 103, 126syl2an 464 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C )  e.  CC )
128121, 124, 127fsumser 12487 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ n  e.  ( 1 ... k
) ( ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
)  =  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  k
) )
129109, 128eqtrd 2444 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( sum_ n  e.  ( 1 ... k ) ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
)  =  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  k
) )
130 ovolsca.10 . . . . . . . . . . 11  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( C  x.  R ) ) )
131 eqid 2412 . . . . . . . . . . . . . . . 16  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
132 ovolsca.5 . . . . . . . . . . . . . . . 16  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
133131, 132ovolsf 19330 . . . . . . . . . . . . . . 15  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) 
+oo ) )
1346, 133syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  S : NN --> ( 0 [,)  +oo ) )
135 frn 5564 . . . . . . . . . . . . . 14  |-  ( S : NN --> ( 0 [,)  +oo )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
136134, 135syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  (
0 [,)  +oo ) )
137136, 35syl6ss 3328 . . . . . . . . . . . 12  |-  ( ph  ->  ran  S  C_  RR* )
13812, 41rpmulcld 10628 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  x.  R
)  e.  RR+ )
139138rpred 10612 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  x.  R
)  e.  RR )
14039, 139readdcld 9079 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( vol * `  A )  +  ( C  x.  R ) )  e.  RR )
141140rexrd 9098 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( vol * `  A )  +  ( C  x.  R ) )  e.  RR* )
142 supxrleub 10869 . . . . . . . . . . . 12  |-  ( ( ran  S  C_  RR*  /\  (
( vol * `  A )  +  ( C  x.  R ) )  e.  RR* )  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  R ) )  <->  A. x  e.  ran  S  x  <_ 
( ( vol * `  A )  +  ( C  x.  R ) ) ) )
143137, 141, 142syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  R ) )  <->  A. x  e.  ran  S  x  <_ 
( ( vol * `  A )  +  ( C  x.  R ) ) ) )
144130, 143mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ran  S  x  <_  ( ( vol * `  A )  +  ( C  x.  R ) ) )
145 ffn 5558 . . . . . . . . . . . 12  |-  ( S : NN --> ( 0 [,)  +oo )  ->  S  Fn  NN )
146134, 145syl 16 . . . . . . . . . . 11  |-  ( ph  ->  S  Fn  NN )
147 breq1 4183 . . . . . . . . . . . 12  |-  ( x  =  ( S `  k )  ->  (
x  <_  ( ( vol * `  A )  +  ( C  x.  R ) )  <->  ( S `  k )  <_  (
( vol * `  A )  +  ( C  x.  R ) ) ) )
148147ralrn 5840 . . . . . . . . . . 11  |-  ( S  Fn  NN  ->  ( A. x  e.  ran  S  x  <_  ( ( vol * `  A )  +  ( C  x.  R ) )  <->  A. k  e.  NN  ( S `  k )  <_  (
( vol * `  A )  +  ( C  x.  R ) ) ) )
149146, 148syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e. 
ran  S  x  <_  ( ( vol * `  A )  +  ( C  x.  R ) )  <->  A. k  e.  NN  ( S `  k )  <_  ( ( vol
* `  A )  +  ( C  x.  R ) ) ) )
150144, 149mpbid 202 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( S `  k )  <_  ( ( vol
* `  A )  +  ( C  x.  R ) ) )
151150r19.21bi 2772 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  <_ 
( ( vol * `  A )  +  ( C  x.  R ) ) )
1526adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
153131ovolfsval 19328 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
154152, 103, 153syl2an 464 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) ) )
155154, 124, 106fsumser 12487 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ n  e.  ( 1 ... k
) ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  =  (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  F )
) `  k )
)
156132fveq1i 5696 . . . . . . . . 9  |-  ( S `
 k )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  k )
157155, 156syl6eqr 2462 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ n  e.  ( 1 ... k
) ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  =  ( S `  k ) )
15840recnd 9078 . . . . . . . . . . 11  |-  ( ph  ->  ( ( vol * `  A )  /  C
)  e.  CC )
15941rpcnd 10614 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CC )
160100, 158, 159adddid 9076 . . . . . . . . . 10  |-  ( ph  ->  ( C  x.  (
( ( vol * `  A )  /  C
)  +  R ) )  =  ( ( C  x.  ( ( vol * `  A
)  /  C ) )  +  ( C  x.  R ) ) )
16139recnd 9078 . . . . . . . . . . . 12  |-  ( ph  ->  ( vol * `  A )  e.  CC )
162161, 100, 107divcan2d 9756 . . . . . . . . . . 11  |-  ( ph  ->  ( C  x.  (
( vol * `  A )  /  C
) )  =  ( vol * `  A
) )
163162oveq1d 6063 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  x.  ( ( vol * `  A )  /  C
) )  +  ( C  x.  R ) )  =  ( ( vol * `  A
)  +  ( C  x.  R ) ) )
164160, 163eqtrd 2444 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  (
( ( vol * `  A )  /  C
)  +  R ) )  =  ( ( vol * `  A
)  +  ( C  x.  R ) ) )
165164adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( C  x.  ( ( ( vol * `  A
)  /  C )  +  R ) )  =  ( ( vol
* `  A )  +  ( C  x.  R ) ) )
166151, 157, 1653brtr4d 4210 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ n  e.  ( 1 ... k
) ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  <_  ( C  x.  ( ( ( vol
* `  A )  /  C )  +  R
) ) )
16799, 105fsumrecl 12491 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ n  e.  ( 1 ... k
) ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  e.  RR )
16843adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( vol * `  A )  /  C
)  +  R )  e.  RR )
16913adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( C  e.  RR  /\  0  <  C ) )
170 ledivmul 9847 . . . . . . . 8  |-  ( (
sum_ n  e.  (
1 ... k ) ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  e.  RR  /\  ( ( ( vol * `  A )  /  C
)  +  R )  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( sum_ n  e.  ( 1 ... k
) ( ( 2nd `  ( F `  n
) )  -  ( 1st `  ( F `  n ) ) )  /  C )  <_ 
( ( ( vol
* `  A )  /  C )  +  R
)  <->  sum_ n  e.  ( 1 ... k ) ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  <_ 
( C  x.  (
( ( vol * `  A )  /  C
)  +  R ) ) ) )
171167, 168, 169, 170syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
sum_ n  e.  (
1 ... k ) ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  /  C )  <_  (
( ( vol * `  A )  /  C
)  +  R )  <->  sum_ n  e.  ( 1 ... k ) ( ( 2nd `  ( F `  n )
)  -  ( 1st `  ( F `  n
) ) )  <_ 
( C  x.  (
( ( vol * `  A )  /  C
)  +  R ) ) ) )
172166, 171mpbird 224 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( sum_ n  e.  ( 1 ... k ) ( ( 2nd `  ( F `
 n ) )  -  ( 1st `  ( F `  n )
) )  /  C
)  <_  ( (
( vol * `  A )  /  C
)  +  R ) )
173129, 172eqbrtrrd 4202 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  k
)  <_  ( (
( vol * `  A )  /  C
)  +  R ) )
174173ralrimiva 2757 . . . 4  |-  ( ph  ->  A. k  e.  NN  (  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) `  k )  <_  (
( ( vol * `  A )  /  C
)  +  R ) )
175 ffn 5558 . . . . . 6  |-  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) : NN --> ( 0 [,)  +oo )  ->  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  Fn  NN )
17632, 175syl 16 . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )  Fn  NN )
177 breq1 4183 . . . . . 6  |-  ( y  =  (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) `  k )  ->  ( y  <_  (
( ( vol * `  A )  /  C
)  +  R )  <-> 
(  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) `  k )  <_  (
( ( vol * `  A )  /  C
)  +  R ) ) )
178177ralrn 5840 . . . . 5  |-  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) )  Fn  NN  ->  ( A. y  e. 
ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) y  <_  ( ( ( vol * `  A
)  /  C )  +  R )  <->  A. k  e.  NN  (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) `  k )  <_  ( ( ( vol
* `  A )  /  C )  +  R
) ) )
179176, 178syl 16 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) y  <_  ( ( ( vol * `  A
)  /  C )  +  R )  <->  A. k  e.  NN  (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) `  k )  <_  ( ( ( vol
* `  A )  /  C )  +  R
) ) )
180174, 179mpbird 224 . . 3  |-  ( ph  ->  A. y  e.  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) y  <_ 
( ( ( vol
* `  A )  /  C )  +  R
) )
181 supxrleub 10869 . . . 4  |-  ( ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) )  C_  RR* 
/\  ( ( ( vol * `  A
)  /  C )  +  R )  e. 
RR* )  ->  ( sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) ,  RR* ,  <  )  <_  ( ( ( vol * `  A
)  /  C )  +  R )  <->  A. y  e.  ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) y  <_  ( ( ( vol * `  A
)  /  C )  +  R ) ) )
18236, 44, 181syl2anc 643 . . 3  |-  ( ph  ->  ( sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) , 
RR* ,  <  )  <_ 
( ( ( vol
* `  A )  /  C )  +  R
)  <->  A. y  e.  ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) y  <_ 
( ( ( vol
* `  A )  /  C )  +  R
) ) )
183180, 182mpbird 224 . 2  |-  ( ph  ->  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) ,  RR* ,  <  )  <_  (
( ( vol * `  A )  /  C
)  +  R ) )
1845, 38, 44, 98, 183xrletrd 10716 1  |-  ( ph  ->  ( vol * `  B )  <_  (
( ( vol * `  A )  /  C
)  +  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675   {crab 2678   _Vcvv 2924    i^i cin 3287    C_ wss 3288   <.cop 3785   U.cuni 3983   class class class wbr 4180    e. cmpt 4234    X. cxp 4843   ran crn 4846    o. ccom 4849    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6048   1stc1st 6314   2ndc2nd 6315   supcsup 7411   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    +oocpnf 9081   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255    / cdiv 9641   NNcn 9964   ZZ>=cuz 10452   RR+crp 10576   (,)cioo 10880   [,)cico 10882   ...cfz 11007    seq cseq 11286   abscabs 12002   sum_csu 12442   vol
*covol 19320
This theorem is referenced by:  ovolscalem2  19371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-ioo 10884  df-ico 10886  df-fz 11008  df-fzo 11099  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-ovol 19322
  Copyright terms: Public domain W3C validator