MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Unicode version

Theorem ovolscalem2 18889
Description: Lemma for ovolshft 18886. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1  |-  ( ph  ->  A  C_  RR )
ovolsca.2  |-  ( ph  ->  C  e.  RR+ )
ovolsca.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
ovolsca.4  |-  ( ph  ->  ( vol * `  A )  e.  RR )
Assertion
Ref Expression
ovolscalem2  |-  ( ph  ->  ( vol * `  B )  <_  (
( vol * `  A )  /  C
) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ovolscalem2
Dummy variables  f  n  y  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6  |-  ( ph  ->  A  C_  RR )
21adantr 451 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
3 ovolsca.4 . . . . . 6  |-  ( ph  ->  ( vol * `  A )  e.  RR )
43adantr 451 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( vol * `
 A )  e.  RR )
5 ovolsca.2 . . . . . 6  |-  ( ph  ->  C  e.  RR+ )
6 rpmulcl 10391 . . . . . 6  |-  ( ( C  e.  RR+  /\  y  e.  RR+ )  ->  ( C  x.  y )  e.  RR+ )
75, 6sylan 457 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( C  x.  y )  e.  RR+ )
8 eqid 2296 . . . . . 6  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
98ovolgelb 18855 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol * `  A )  e.  RR  /\  ( C  x.  y )  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( C  x.  y ) ) ) )
102, 4, 7, 9syl3anc 1182 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( C  x.  y ) ) ) )
111ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  A  C_  RR )
125ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  C  e.  RR+ )
13 ovolsca.3 . . . . . . . 8  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
1413ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
153ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  ( vol * `  A )  e.  RR )
16 fveq2 5541 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
f `  m )  =  ( f `  n ) )
1716fveq2d 5545 . . . . . . . . . 10  |-  ( m  =  n  ->  ( 1st `  ( f `  m ) )  =  ( 1st `  (
f `  n )
) )
1817oveq1d 5889 . . . . . . . . 9  |-  ( m  =  n  ->  (
( 1st `  (
f `  m )
)  /  C )  =  ( ( 1st `  ( f `  n
) )  /  C
) )
1916fveq2d 5545 . . . . . . . . . 10  |-  ( m  =  n  ->  ( 2nd `  ( f `  m ) )  =  ( 2nd `  (
f `  n )
) )
2019oveq1d 5889 . . . . . . . . 9  |-  ( m  =  n  ->  (
( 2nd `  (
f `  m )
)  /  C )  =  ( ( 2nd `  ( f `  n
) )  /  C
) )
2118, 20opeq12d 3820 . . . . . . . 8  |-  ( m  =  n  ->  <. (
( 1st `  (
f `  m )
)  /  C ) ,  ( ( 2nd `  ( f `  m
) )  /  C
) >.  =  <. (
( 1st `  (
f `  n )
)  /  C ) ,  ( ( 2nd `  ( f `  n
) )  /  C
) >. )
2221cbvmptv 4127 . . . . . . 7  |-  ( m  e.  NN  |->  <. (
( 1st `  (
f `  m )
)  /  C ) ,  ( ( 2nd `  ( f `  m
) )  /  C
) >. )  =  ( n  e.  NN  |->  <.
( ( 1st `  (
f `  n )
)  /  C ) ,  ( ( 2nd `  ( f `  n
) )  /  C
) >. )
23 elmapi 6808 . . . . . . . 8  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2423ad2antrl 708 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
25 simprrl 740 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  A  C_ 
U. ran  ( (,)  o.  f ) )
26 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  y  e.  RR+ )
27 simprrr 741 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( C  x.  y ) ) )
2811, 12, 14, 15, 8, 22, 24, 25, 26, 27ovolscalem1 18888 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  A )  +  ( C  x.  y ) ) ) ) )  ->  ( vol * `  B )  <_  ( ( ( vol * `  A
)  /  C )  +  y ) )
2928expr 598 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( C  x.  y ) ) )  ->  ( vol * `  B )  <_  ( ( ( vol * `  A
)  /  C )  +  y ) ) )
3029rexlimdva 2680 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  A )  +  ( C  x.  y ) ) )  ->  ( vol * `  B )  <_  ( ( ( vol * `  A
)  /  C )  +  y ) ) )
3110, 30mpd 14 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( vol * `
 B )  <_ 
( ( ( vol
* `  A )  /  C )  +  y ) )
3231ralrimiva 2639 . 2  |-  ( ph  ->  A. y  e.  RR+  ( vol * `  B
)  <_  ( (
( vol * `  A )  /  C
)  +  y ) )
33 ssrab2 3271 . . . . . 6  |-  { x  e.  RR  |  ( C  x.  x )  e.  A }  C_  RR
3433a1i 10 . . . . 5  |-  ( ph  ->  { x  e.  RR  |  ( C  x.  x )  e.  A }  C_  RR )
3513, 34eqsstrd 3225 . . . 4  |-  ( ph  ->  B  C_  RR )
36 ovolcl 18853 . . . 4  |-  ( B 
C_  RR  ->  ( vol
* `  B )  e.  RR* )
3735, 36syl 15 . . 3  |-  ( ph  ->  ( vol * `  B )  e.  RR* )
383, 5rerpdivcld 10433 . . 3  |-  ( ph  ->  ( ( vol * `  A )  /  C
)  e.  RR )
39 xralrple 10548 . . 3  |-  ( ( ( vol * `  B )  e.  RR*  /\  ( ( vol * `  A )  /  C
)  e.  RR )  ->  ( ( vol
* `  B )  <_  ( ( vol * `  A )  /  C
)  <->  A. y  e.  RR+  ( vol * `  B
)  <_  ( (
( vol * `  A )  /  C
)  +  y ) ) )
4037, 38, 39syl2anc 642 . 2  |-  ( ph  ->  ( ( vol * `  B )  <_  (
( vol * `  A )  /  C
)  <->  A. y  e.  RR+  ( vol * `  B
)  <_  ( (
( vol * `  A )  /  C
)  +  y ) ) )
4132, 40mpbird 223 1  |-  ( ph  ->  ( vol * `  B )  <_  (
( vol * `  A )  /  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   <.cop 3656   U.cuni 3843   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137    ^m cmap 6788   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   RR+crp 10370   (,)cioo 10672    seq cseq 11062   abscabs 11735   vol
*covol 18838
This theorem is referenced by:  ovolsca  18890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-ioo 10676  df-ico 10678  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ovol 18840
  Copyright terms: Public domain W3C validator