MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Unicode version

Theorem ovolshftlem2 18885
Description: Lemma for ovolshft 18886. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1  |-  ( ph  ->  A  C_  RR )
ovolshft.2  |-  ( ph  ->  C  e.  RR )
ovolshft.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
ovolshft.4  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolshftlem2  |-  ( ph  ->  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) }  C_  M )
Distinct variable groups:    f, g, x, y, z, A    C, f, g, x, y, z    B, f, g, y, z   
g, M, z    ph, f,
g, y, z
Allowed substitution hints:    ph( x)    B( x)    M( x, y, f)

Proof of Theorem ovolshftlem2
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
21ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  ->  A  C_  RR )
3 ovolshft.2 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
43ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  ->  C  e.  RR )
5 ovolshft.3 . . . . . . . 8  |-  ( ph  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
65ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  ->  B  =  { x  e.  RR  |  ( x  -  C )  e.  A } )
7 ovolshft.4 . . . . . . 7  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
8 eqid 2296 . . . . . . 7  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  g )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  g )
)
9 fveq2 5541 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
g `  m )  =  ( g `  n ) )
109fveq2d 5545 . . . . . . . . . 10  |-  ( m  =  n  ->  ( 1st `  ( g `  m ) )  =  ( 1st `  (
g `  n )
) )
1110oveq1d 5889 . . . . . . . . 9  |-  ( m  =  n  ->  (
( 1st `  (
g `  m )
)  +  C )  =  ( ( 1st `  ( g `  n
) )  +  C
) )
129fveq2d 5545 . . . . . . . . . 10  |-  ( m  =  n  ->  ( 2nd `  ( g `  m ) )  =  ( 2nd `  (
g `  n )
) )
1312oveq1d 5889 . . . . . . . . 9  |-  ( m  =  n  ->  (
( 2nd `  (
g `  m )
)  +  C )  =  ( ( 2nd `  ( g `  n
) )  +  C
) )
1411, 13opeq12d 3820 . . . . . . . 8  |-  ( m  =  n  ->  <. (
( 1st `  (
g `  m )
)  +  C ) ,  ( ( 2nd `  ( g `  m
) )  +  C
) >.  =  <. (
( 1st `  (
g `  n )
)  +  C ) ,  ( ( 2nd `  ( g `  n
) )  +  C
) >. )
1514cbvmptv 4127 . . . . . . 7  |-  ( m  e.  NN  |->  <. (
( 1st `  (
g `  m )
)  +  C ) ,  ( ( 2nd `  ( g `  m
) )  +  C
) >. )  =  ( n  e.  NN  |->  <.
( ( 1st `  (
g `  n )
)  +  C ) ,  ( ( 2nd `  ( g `  n
) )  +  C
) >. )
16 simplr 731 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  -> 
g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
17 reex 8844 . . . . . . . . . . 11  |-  RR  e.  _V
1817, 17xpex 4817 . . . . . . . . . 10  |-  ( RR 
X.  RR )  e. 
_V
1918inex2 4172 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
20 nnex 9768 . . . . . . . . 9  |-  NN  e.  _V
2119, 20elmap 6812 . . . . . . . 8  |-  ( g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  g : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2216, 21sylib 188 . . . . . . 7  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  -> 
g : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
23 simpr 447 . . . . . . 7  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  ->  A  C_  U. ran  ( (,)  o.  g ) )
242, 4, 6, 7, 8, 15, 22, 23ovolshftlem1 18884 . . . . . 6  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  ->  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  g )
) ,  RR* ,  <  )  e.  M )
25 eleq1a 2365 . . . . . 6  |-  ( sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  g )
) ,  RR* ,  <  )  e.  M  ->  (
z  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  )  -> 
z  e.  M ) )
2624, 25syl 15 . . . . 5  |-  ( ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  /\  A  C_ 
U. ran  ( (,)  o.  g ) )  -> 
( z  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  g ) ) , 
RR* ,  <  )  -> 
z  e.  M ) )
2726expimpd 586 . . . 4  |-  ( ( ( ph  /\  z  e.  RR* )  /\  g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( A  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  g ) ) , 
RR* ,  <  ) )  ->  z  e.  M
) )
2827rexlimdva 2680 . . 3  |-  ( (
ph  /\  z  e.  RR* )  ->  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) )  -> 
z  e.  M ) )
2928ralrimiva 2639 . 2  |-  ( ph  ->  A. z  e.  RR*  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) )  ->  z  e.  M
) )
30 rabss 3263 . 2  |-  ( { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) ) } 
C_  M  <->  A. z  e.  RR*  ( E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  g
) ) ,  RR* ,  <  ) )  -> 
z  e.  M ) )
3129, 30sylibr 203 1  |-  ( ph  ->  { z  e.  RR*  |  E. g  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  g )  /\  z  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  g ) ) , 
RR* ,  <  ) ) }  C_  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   <.cop 3656   U.cuni 3843    e. cmpt 4093    X. cxp 4703   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137    ^m cmap 6788   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   (,)cioo 10672    seq cseq 11062   abscabs 11735
This theorem is referenced by:  ovolshft  18886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ioo 10676  df-ico 10678  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737
  Copyright terms: Public domain W3C validator