MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsslem Unicode version

Theorem ovolsslem 18859
Description: Lemma for ovolss 18860. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
ovolss.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
ovolss.2  |-  N  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolsslem  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( vol * `  A )  <_  ( vol * `  B ) )
Distinct variable groups:    y, f, A    B, f, y
Allowed substitution hints:    M( y, f)    N( y, f)

Proof of Theorem ovolsslem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3199 . . . . . . . . 9  |-  ( A 
C_  B  ->  ( B  C_  U. ran  ( (,)  o.  f )  ->  A  C_  U. ran  ( (,)  o.  f ) ) )
21ad2antrr 706 . . . . . . . 8  |-  ( ( ( A  C_  B  /\  B  C_  RR )  /\  y  e.  RR* )  ->  ( B  C_  U.
ran  ( (,)  o.  f )  ->  A  C_ 
U. ran  ( (,)  o.  f ) ) )
32anim1d 547 . . . . . . 7  |-  ( ( ( A  C_  B  /\  B  C_  RR )  /\  y  e.  RR* )  ->  ( ( B 
C_  U. ran  ( (,) 
o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  ->  ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) ) )
43reximdv 2667 . . . . . 6  |-  ( ( ( A  C_  B  /\  B  C_  RR )  /\  y  e.  RR* )  ->  ( E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) )  ->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
54ss2rabdv 3267 . . . . 5  |-  ( ( A  C_  B  /\  B  C_  RR )  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }  C_  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
6 ovolss.2 . . . . 5  |-  N  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
7 ovolss.1 . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
85, 6, 73sstr4g 3232 . . . 4  |-  ( ( A  C_  B  /\  B  C_  RR )  ->  N  C_  M )
9 sstr 3200 . . . . 5  |-  ( ( A  C_  B  /\  B  C_  RR )  ->  A  C_  RR )
107ovolval 18849 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
1110adantr 451 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  M )  ->  ( vol * `  A )  =  sup ( M ,  RR* ,  `'  <  ) )
12 ssrab2 3271 . . . . . . . . . 10  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } 
C_  RR*
137, 12eqsstri 3221 . . . . . . . . 9  |-  M  C_  RR*
14 infmxrlb 10668 . . . . . . . . 9  |-  ( ( M  C_  RR*  /\  x  e.  M )  ->  sup ( M ,  RR* ,  `'  <  )  <_  x )
1513, 14mpan 651 . . . . . . . 8  |-  ( x  e.  M  ->  sup ( M ,  RR* ,  `'  <  )  <_  x )
1615adantl 452 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  M )  ->  sup ( M ,  RR* ,  `'  <  )  <_  x )
1711, 16eqbrtrd 4059 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  M )  ->  ( vol * `  A )  <_  x )
1817ralrimiva 2639 . . . . 5  |-  ( A 
C_  RR  ->  A. x  e.  M  ( vol * `
 A )  <_  x )
199, 18syl 15 . . . 4  |-  ( ( A  C_  B  /\  B  C_  RR )  ->  A. x  e.  M  ( vol * `  A
)  <_  x )
20 ssralv 3250 . . . 4  |-  ( N 
C_  M  ->  ( A. x  e.  M  ( vol * `  A
)  <_  x  ->  A. x  e.  N  ( vol * `  A
)  <_  x )
)
218, 19, 20sylc 56 . . 3  |-  ( ( A  C_  B  /\  B  C_  RR )  ->  A. x  e.  N  ( vol * `  A
)  <_  x )
22 ssrab2 3271 . . . . 5  |-  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( B  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } 
C_  RR*
236, 22eqsstri 3221 . . . 4  |-  N  C_  RR*
24 ovolcl 18853 . . . . 5  |-  ( A 
C_  RR  ->  ( vol
* `  A )  e.  RR* )
259, 24syl 15 . . . 4  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( vol * `  A )  e.  RR* )
26 infmxrgelb 10669 . . . 4  |-  ( ( N  C_  RR*  /\  ( vol * `  A )  e.  RR* )  ->  (
( vol * `  A )  <_  sup ( N ,  RR* ,  `'  <  )  <->  A. x  e.  N  ( vol * `  A
)  <_  x )
)
2723, 25, 26sylancr 644 . . 3  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( ( vol * `  A )  <_  sup ( N ,  RR* ,  `'  <  )  <->  A. x  e.  N  ( vol * `  A
)  <_  x )
)
2821, 27mpbird 223 . 2  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( vol * `  A )  <_  sup ( N ,  RR* ,  `'  <  ) )
296ovolval 18849 . . 3  |-  ( B 
C_  RR  ->  ( vol
* `  B )  =  sup ( N ,  RR* ,  `'  <  )
)
3029adantl 452 . 2  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( vol * `  B )  =  sup ( N ,  RR* ,  `'  <  ) )
3128, 30breqtrrd 4065 1  |-  ( ( A  C_  B  /\  B  C_  RR )  -> 
( vol * `  A )  <_  ( vol * `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   U.cuni 3843   class class class wbr 4039    X. cxp 4703   `'ccnv 4704   ran crn 4706    o. ccom 4709   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   (,)cioo 10672    seq cseq 11062   abscabs 11735   vol
*covol 18838
This theorem is referenced by:  ovolss  18860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-ovol 18840
  Copyright terms: Public domain W3C validator