MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem1 Structured version   Unicode version

Theorem ovolunlem1 19393
Description: Lemma for ovolun 19395. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a  |-  ( ph  ->  ( A  C_  RR  /\  ( vol * `  A )  e.  RR ) )
ovolun.b  |-  ( ph  ->  ( B  C_  RR  /\  ( vol * `  B )  e.  RR ) )
ovolun.c  |-  ( ph  ->  C  e.  RR+ )
ovolun.s  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ovolun.t  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ovolun.u  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ovolun.f1  |-  ( ph  ->  F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovolun.f2  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
ovolun.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( C  /  2 ) ) )
ovolun.g1  |-  ( ph  ->  G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
ovolun.g2  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
ovolun.g3  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  B )  +  ( C  /  2 ) ) )
ovolun.h  |-  H  =  ( n  e.  NN  |->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) ) )
Assertion
Ref Expression
ovolunlem1  |-  ( ph  ->  ( vol * `  ( A  u.  B
) )  <_  (
( ( vol * `  A )  +  ( vol * `  B
) )  +  C
) )
Distinct variable groups:    C, n    n, F    A, n    B, n   
n, G    ph, n
Allowed substitution hints:    S( n)    T( n)    U( n)    H( n)

Proof of Theorem ovolunlem1
Dummy variables  k 
z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . . 5  |-  ( ph  ->  ( A  C_  RR  /\  ( vol * `  A )  e.  RR ) )
21simpld 446 . . . 4  |-  ( ph  ->  A  C_  RR )
3 ovolun.b . . . . 5  |-  ( ph  ->  ( B  C_  RR  /\  ( vol * `  B )  e.  RR ) )
43simpld 446 . . . 4  |-  ( ph  ->  B  C_  RR )
52, 4unssd 3523 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  RR )
6 ovolun.g1 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
7 reex 9081 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
87, 7xpex 4990 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  e. 
_V
98inex2 4345 . . . . . . . . . . . . 13  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
10 nnex 10006 . . . . . . . . . . . . 13  |-  NN  e.  _V
119, 10elmap 7042 . . . . . . . . . . . 12  |-  ( G  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
126, 11sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
1312adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  G : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
1413ffvelrnda 5870 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
n  /  2 )  e.  NN )  -> 
( G `  (
n  /  2 ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
15 nneo 10353 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  /  2
)  e.  NN  <->  -.  (
( n  +  1 )  /  2 )  e.  NN ) )
1615adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  /  2 )  e.  NN  <->  -.  (
( n  +  1 )  /  2 )  e.  NN ) )
1716con2bid 320 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( n  +  1 )  /  2 )  e.  NN  <->  -.  (
n  /  2 )  e.  NN ) )
1817biimpar 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  ( n  /  2
)  e.  NN )  ->  ( ( n  +  1 )  / 
2 )  e.  NN )
19 ovolun.f1 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
209, 10elmap 7042 . . . . . . . . . . . . 13  |-  ( F  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2119, 20sylib 189 . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2221adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
2322ffvelrnda 5870 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
( n  +  1 )  /  2 )  e.  NN )  -> 
( F `  (
( n  +  1 )  /  2 ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2418, 23syldan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  ( n  /  2
)  e.  NN )  ->  ( F `  ( ( n  + 
1 )  /  2
) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2514, 24ifclda 3766 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  if ( ( n  /  2
)  e.  NN , 
( G `  (
n  /  2 ) ) ,  ( F `
 ( ( n  +  1 )  / 
2 ) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
26 ovolun.h . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) ) )
2725, 26fmptd 5893 . . . . . . 7  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
28 eqid 2436 . . . . . . . 8  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
29 ovolun.u . . . . . . . 8  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
3028, 29ovolsf 19369 . . . . . . 7  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U : NN --> ( 0 [,) 
+oo ) )
3127, 30syl 16 . . . . . 6  |-  ( ph  ->  U : NN --> ( 0 [,)  +oo ) )
32 0re 9091 . . . . . . 7  |-  0  e.  RR
33 pnfxr 10713 . . . . . . 7  |-  +oo  e.  RR*
34 icossre 10991 . . . . . . 7  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
3532, 33, 34mp2an 654 . . . . . 6  |-  ( 0 [,)  +oo )  C_  RR
36 fss 5599 . . . . . 6  |-  ( ( U : NN --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  RR )  ->  U : NN
--> RR )
3731, 35, 36sylancl 644 . . . . 5  |-  ( ph  ->  U : NN --> RR )
38 frn 5597 . . . . 5  |-  ( U : NN --> RR  ->  ran 
U  C_  RR )
3937, 38syl 16 . . . 4  |-  ( ph  ->  ran  U  C_  RR )
40 1nn 10011 . . . . . . 7  |-  1  e.  NN
41 1z 10311 . . . . . . . . . 10  |-  1  e.  ZZ
42 seqfn 11335 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  ( ZZ>=
`  1 ) )
4341, 42mp1i 12 . . . . . . . . 9  |-  ( ph  ->  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )  Fn  ( ZZ>= `  1 )
)
4429fneq1i 5539 . . . . . . . . . 10  |-  ( U  Fn  NN  <->  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  H )
)  Fn  NN )
45 nnuz 10521 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
4645fneq2i 5540 . . . . . . . . . 10  |-  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  NN  <->  seq  1 (  +  , 
( ( abs  o.  -  )  o.  H
) )  Fn  ( ZZ>=
`  1 ) )
4744, 46bitri 241 . . . . . . . . 9  |-  ( U  Fn  NN  <->  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  H )
)  Fn  ( ZZ>= ` 
1 ) )
4843, 47sylibr 204 . . . . . . . 8  |-  ( ph  ->  U  Fn  NN )
49 fndm 5544 . . . . . . . 8  |-  ( U  Fn  NN  ->  dom  U  =  NN )
5048, 49syl 16 . . . . . . 7  |-  ( ph  ->  dom  U  =  NN )
5140, 50syl5eleqr 2523 . . . . . 6  |-  ( ph  ->  1  e.  dom  U
)
52 ne0i 3634 . . . . . 6  |-  ( 1  e.  dom  U  ->  dom  U  =/=  (/) )
5351, 52syl 16 . . . . 5  |-  ( ph  ->  dom  U  =/=  (/) )
54 dm0rn0 5086 . . . . . 6  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
5554necon3bii 2633 . . . . 5  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
5653, 55sylib 189 . . . 4  |-  ( ph  ->  ran  U  =/=  (/) )
571simprd 450 . . . . . . . 8  |-  ( ph  ->  ( vol * `  A )  e.  RR )
583simprd 450 . . . . . . . 8  |-  ( ph  ->  ( vol * `  B )  e.  RR )
5957, 58readdcld 9115 . . . . . . 7  |-  ( ph  ->  ( ( vol * `  A )  +  ( vol * `  B
) )  e.  RR )
60 ovolun.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
6160rpred 10648 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
6259, 61readdcld 9115 . . . . . 6  |-  ( ph  ->  ( ( ( vol
* `  A )  +  ( vol * `  B ) )  +  C )  e.  RR )
63 ovolun.s . . . . . . . . 9  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
64 ovolun.t . . . . . . . . 9  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
65 ovolun.f2 . . . . . . . . 9  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  F ) )
66 ovolun.f3 . . . . . . . . 9  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  A )  +  ( C  /  2 ) ) )
67 ovolun.g2 . . . . . . . . 9  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  G ) )
68 ovolun.g3 . . . . . . . . 9  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  B )  +  ( C  /  2 ) ) )
691, 3, 60, 63, 64, 29, 19, 65, 66, 6, 67, 68, 26ovolunlem1a 19392 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( U `
 k )  <_ 
( ( ( vol
* `  A )  +  ( vol * `  B ) )  +  C ) )
7069ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C ) )
71 breq1 4215 . . . . . . . . 9  |-  ( z  =  ( U `  k )  ->  (
z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
)  <->  ( U `  k )  <_  (
( ( vol * `  A )  +  ( vol * `  B
) )  +  C
) ) )
7271ralrn 5873 . . . . . . . 8  |-  ( U  Fn  NN  ->  ( A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
)  <->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C ) ) )
7348, 72syl 16 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  U  z  <_  ( ( ( vol * `  A )  +  ( vol * `  B
) )  +  C
)  <->  A. k  e.  NN  ( U `  k )  <_  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C ) ) )
7470, 73mpbird 224 . . . . . 6  |-  ( ph  ->  A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
) )
75 breq2 4216 . . . . . . . 8  |-  ( k  =  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C )  ->  ( z  <_ 
k  <->  z  <_  (
( ( vol * `  A )  +  ( vol * `  B
) )  +  C
) ) )
7675ralbidv 2725 . . . . . . 7  |-  ( k  =  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C )  ->  ( A. z  e.  ran  U  z  <_ 
k  <->  A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
) ) )
7776rspcev 3052 . . . . . 6  |-  ( ( ( ( ( vol
* `  A )  +  ( vol * `  B ) )  +  C )  e.  RR  /\ 
A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
) )  ->  E. k  e.  RR  A. z  e. 
ran  U  z  <_  k )
7862, 74, 77syl2anc 643 . . . . 5  |-  ( ph  ->  E. k  e.  RR  A. z  e.  ran  U  z  <_  k )
79 ressxr 9129 . . . . . . 7  |-  RR  C_  RR*
8039, 79syl6ss 3360 . . . . . 6  |-  ( ph  ->  ran  U  C_  RR* )
81 supxrbnd2 10901 . . . . . 6  |-  ( ran 
U  C_  RR*  ->  ( E. k  e.  RR  A. z  e.  ran  U  z  <_  k  <->  sup ( ran  U ,  RR* ,  <  )  <  +oo ) )
8280, 81syl 16 . . . . 5  |-  ( ph  ->  ( E. k  e.  RR  A. z  e. 
ran  U  z  <_  k  <->  sup ( ran  U ,  RR* ,  <  )  <  +oo ) )
8378, 82mpbid 202 . . . 4  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  <  +oo )
84 supxrbnd 10907 . . . 4  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  sup ( ran  U ,  RR* ,  <  )  <  +oo )  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR )
8539, 56, 83, 84syl3anc 1184 . . 3  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  e.  RR )
86 nncn 10008 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
8786adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
88872timesd 10210 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  =  ( m  +  m
) )
8988oveq1d 6096 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  =  ( ( m  +  m )  -  1 ) )
90 ax-1cn 9048 . . . . . . . . . . . . . . 15  |-  1  e.  CC
9190a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  1  e.  CC )
9287, 87, 91addsubassd 9431 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( m  +  m )  -  1 )  =  ( m  +  ( m  -  1 ) ) )
9389, 92eqtrd 2468 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  =  ( m  +  ( m  -  1 ) ) )
94 simpr 448 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  NN )
95 nnm1nn0 10261 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
m  -  1 )  e.  NN0 )
9695adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  -  1 )  e. 
NN0 )
97 nnnn0addcl 10251 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( m  -  1
)  e.  NN0 )  ->  ( m  +  ( m  -  1 ) )  e.  NN )
9894, 96, 97syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  ( m  - 
1 ) )  e.  NN )
9993, 98eqeltrd 2510 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  -  1 )  e.  NN )
100 oveq1 6088 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
n  /  2 )  =  ( ( ( 2  x.  m )  -  1 )  / 
2 ) )
101100eleq1d 2502 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
( n  /  2
)  e.  NN  <->  ( (
( 2  x.  m
)  -  1 )  /  2 )  e.  NN ) )
102100fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( ( ( 2  x.  m )  - 
1 )  /  2
) ) )
103 oveq1 6088 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
n  +  1 )  =  ( ( ( 2  x.  m )  -  1 )  +  1 ) )
104103oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  (
( n  +  1 )  /  2 )  =  ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )
105104fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  ( F `  ( (
n  +  1 )  /  2 ) )  =  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) )
106101, 102, 105ifbieq12d 3761 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2  x.  m )  - 
1 )  ->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) )  =  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) ) )
107 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( G `
 ( ( ( 2  x.  m )  -  1 )  / 
2 ) )  e. 
_V
108 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )  e. 
_V
109107, 108ifex 3797 . . . . . . . . . . . . . 14  |-  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )  e.  _V
110106, 26, 109fvmpt 5806 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  m
)  -  1 )  e.  NN  ->  ( H `  ( (
2  x.  m )  -  1 ) )  =  if ( ( ( ( 2  x.  m )  -  1 )  /  2 )  e.  NN ,  ( G `  ( ( ( 2  x.  m
)  -  1 )  /  2 ) ) ,  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) ) )
11199, 110syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( ( 2  x.  m )  - 
1 ) )  =  if ( ( ( ( 2  x.  m
)  -  1 )  /  2 )  e.  NN ,  ( G `
 ( ( ( 2  x.  m )  -  1 )  / 
2 ) ) ,  ( F `  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 ) ) ) )
112 2nn 10133 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  NN
113 nnmulcl 10023 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  NN  /\  m  e.  NN )  ->  ( 2  x.  m
)  e.  NN )
114112, 94, 113sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  e.  NN )
115114nncnd 10016 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( 2  x.  m )  e.  CC )
116 npcan 9314 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2  x.  m
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  m )  - 
1 )  +  1 )  =  ( 2  x.  m ) )
117115, 90, 116sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 2  x.  m
)  -  1 )  +  1 )  =  ( 2  x.  m
) )
118117oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  =  ( ( 2  x.  m )  /  2
) )
119 2cn 10070 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
120 2ne0 10083 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
121 divcan3 9702 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  m
)  /  2 )  =  m )
122119, 120, 121mp3an23 1271 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  CC  ->  (
( 2  x.  m
)  /  2 )  =  m )
12387, 122syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  /  2 )  =  m )
124118, 123eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  =  m )
125124, 94eqeltrd 2510 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 )  e.  NN )
126 nneo 10353 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  m
)  -  1 )  e.  NN  ->  (
( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN  <->  -.  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN ) )
12799, 126syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( 2  x.  m )  -  1 )  /  2 )  e.  NN  <->  -.  (
( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN ) )
128127con2bid 320 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( ( ( 2  x.  m )  - 
1 )  +  1 )  /  2 )  e.  NN  <->  -.  (
( ( 2  x.  m )  -  1 )  /  2 )  e.  NN ) )
129125, 128mpbid 202 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  -.  (
( ( 2  x.  m )  -  1 )  /  2 )  e.  NN )
130 iffalse 3746 . . . . . . . . . . . . 13  |-  ( -.  ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN  ->  if ( ( ( ( 2  x.  m )  -  1 )  / 
2 )  e.  NN ,  ( G `  ( ( ( 2  x.  m )  - 
1 )  /  2
) ) ,  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2 ) ) )  =  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )
131129, 130syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  if ( ( ( ( 2  x.  m )  - 
1 )  /  2
)  e.  NN , 
( G `  (
( ( 2  x.  m )  -  1 )  /  2 ) ) ,  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) ) )  =  ( F `  ( ( ( ( 2  x.  m )  -  1 )  +  1 )  /  2
) ) )
132124fveq2d 5732 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 ( ( ( ( 2  x.  m
)  -  1 )  +  1 )  / 
2 ) )  =  ( F `  m
) )
133111, 131, 1323eqtrd 2472 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( ( 2  x.  m )  - 
1 ) )  =  ( F `  m
) )
134 fveq2 5728 . . . . . . . . . . . . 13  |-  ( k  =  ( ( 2  x.  m )  - 
1 )  ->  ( H `  k )  =  ( H `  ( ( 2  x.  m )  -  1 ) ) )
135134eqeq1d 2444 . . . . . . . . . . . 12  |-  ( k  =  ( ( 2  x.  m )  - 
1 )  ->  (
( H `  k
)  =  ( F `
 m )  <->  ( H `  ( ( 2  x.  m )  -  1 ) )  =  ( F `  m ) ) )
136135rspcev 3052 . . . . . . . . . . 11  |-  ( ( ( ( 2  x.  m )  -  1 )  e.  NN  /\  ( H `  ( ( 2  x.  m )  -  1 ) )  =  ( F `  m ) )  ->  E. k  e.  NN  ( H `  k )  =  ( F `  m ) )
13799, 133, 136syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  E. k  e.  NN  ( H `  k )  =  ( F `  m ) )
138 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( F `  m )  ->  ( 1st `  ( H `  k ) )  =  ( 1st `  ( F `  m )
) )
139138breq1d 4222 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( F `  m )  ->  (
( 1st `  ( H `  k )
)  <  z  <->  ( 1st `  ( F `  m
) )  <  z
) )
140 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( F `  m )  ->  ( 2nd `  ( H `  k ) )  =  ( 2nd `  ( F `  m )
) )
141140breq2d 4224 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( F `  m )  ->  (
z  <  ( 2nd `  ( H `  k
) )  <->  z  <  ( 2nd `  ( F `
 m ) ) ) )
142139, 141anbi12d 692 . . . . . . . . . . . 12  |-  ( ( H `  k )  =  ( F `  m )  ->  (
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) )  <->  ( ( 1st `  ( F `  m ) )  < 
z  /\  z  <  ( 2nd `  ( F `
 m ) ) ) ) )
143142biimprcd 217 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  (
( H `  k
)  =  ( F `
 m )  -> 
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
144143reximdv 2817 . . . . . . . . . 10  |-  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  ( E. k  e.  NN  ( H `  k )  =  ( F `  m )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
145137, 144syl5com 28 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
146145rexlimdva 2830 . . . . . . . 8  |-  ( ph  ->  ( E. m  e.  NN  ( ( 1st `  ( F `  m
) )  <  z  /\  z  <  ( 2nd `  ( F `  m
) ) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
147146ralimdv 2785 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m
) )  <  z  /\  z  <  ( 2nd `  ( F `  m
) ) )  ->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
148 ovolfioo 19364 . . . . . . . 8  |-  ( ( A  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) ) ) )
1492, 21, 148syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  <->  A. z  e.  A  E. m  e.  NN  ( ( 1st `  ( F `  m )
)  <  z  /\  z  <  ( 2nd `  ( F `  m )
) ) ) )
150 ovolfioo 19364 . . . . . . . 8  |-  ( ( A  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
1512, 27, 150syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  A  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
152147, 149, 1513imtr4d 260 . . . . . 6  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  F )  ->  A  C_  U. ran  ( (,)  o.  H ) ) )
15365, 152mpd 15 . . . . 5  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  H ) )
154 oveq1 6088 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  x.  m )  ->  (
n  /  2 )  =  ( ( 2  x.  m )  / 
2 ) )
155154eleq1d 2502 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  (
( n  /  2
)  e.  NN  <->  ( (
2  x.  m )  /  2 )  e.  NN ) )
156154fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  ( G `  ( n  /  2 ) )  =  ( G `  ( ( 2  x.  m )  /  2
) ) )
157 oveq1 6088 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( 2  x.  m )  ->  (
n  +  1 )  =  ( ( 2  x.  m )  +  1 ) )
158157oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  x.  m )  ->  (
( n  +  1 )  /  2 )  =  ( ( ( 2  x.  m )  +  1 )  / 
2 ) )
159158fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  x.  m )  ->  ( F `  ( (
n  +  1 )  /  2 ) )  =  ( F `  ( ( ( 2  x.  m )  +  1 )  /  2
) ) )
160155, 156, 159ifbieq12d 3761 . . . . . . . . . . . . . 14  |-  ( n  =  ( 2  x.  m )  ->  if ( ( n  / 
2 )  e.  NN ,  ( G `  ( n  /  2
) ) ,  ( F `  ( ( n  +  1 )  /  2 ) ) )  =  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) ) )
161 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( G `
 ( ( 2  x.  m )  / 
2 ) )  e. 
_V
162 fvex 5742 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) )  e. 
_V
163161, 162ifex 3797 . . . . . . . . . . . . . 14  |-  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) )  e.  _V
164160, 26, 163fvmpt 5806 . . . . . . . . . . . . 13  |-  ( ( 2  x.  m )  e.  NN  ->  ( H `  ( 2  x.  m ) )  =  if ( ( ( 2  x.  m )  /  2 )  e.  NN ,  ( G `
 ( ( 2  x.  m )  / 
2 ) ) ,  ( F `  (
( ( 2  x.  m )  +  1 )  /  2 ) ) ) )
165114, 164syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( 2  x.  m ) )  =  if ( ( ( 2  x.  m )  /  2 )  e.  NN ,  ( G `
 ( ( 2  x.  m )  / 
2 ) ) ,  ( F `  (
( ( 2  x.  m )  +  1 )  /  2 ) ) ) )
166123, 94eqeltrd 2510 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( 2  x.  m )  /  2 )  e.  NN )
167 iftrue 3745 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  m
)  /  2 )  e.  NN  ->  if ( ( ( 2  x.  m )  / 
2 )  e.  NN ,  ( G `  ( ( 2  x.  m )  /  2
) ) ,  ( F `  ( ( ( 2  x.  m
)  +  1 )  /  2 ) ) )  =  ( G `
 ( ( 2  x.  m )  / 
2 ) ) )
168166, 167syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  if ( ( ( 2  x.  m )  /  2
)  e.  NN , 
( G `  (
( 2  x.  m
)  /  2 ) ) ,  ( F `
 ( ( ( 2  x.  m )  +  1 )  / 
2 ) ) )  =  ( G `  ( ( 2  x.  m )  /  2
) ) )
169123fveq2d 5732 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 ( ( 2  x.  m )  / 
2 ) )  =  ( G `  m
) )
170165, 168, 1693eqtrd 2472 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( H `
 ( 2  x.  m ) )  =  ( G `  m
) )
171 fveq2 5728 . . . . . . . . . . . . 13  |-  ( k  =  ( 2  x.  m )  ->  ( H `  k )  =  ( H `  ( 2  x.  m
) ) )
172171eqeq1d 2444 . . . . . . . . . . . 12  |-  ( k  =  ( 2  x.  m )  ->  (
( H `  k
)  =  ( G `
 m )  <->  ( H `  ( 2  x.  m
) )  =  ( G `  m ) ) )
173172rspcev 3052 . . . . . . . . . . 11  |-  ( ( ( 2  x.  m
)  e.  NN  /\  ( H `  ( 2  x.  m ) )  =  ( G `  m ) )  ->  E. k  e.  NN  ( H `  k )  =  ( G `  m ) )
174114, 170, 173syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  E. k  e.  NN  ( H `  k )  =  ( G `  m ) )
175 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( G `  m )  ->  ( 1st `  ( H `  k ) )  =  ( 1st `  ( G `  m )
) )
176175breq1d 4222 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( G `  m )  ->  (
( 1st `  ( H `  k )
)  <  z  <->  ( 1st `  ( G `  m
) )  <  z
) )
177 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( ( H `  k )  =  ( G `  m )  ->  ( 2nd `  ( H `  k ) )  =  ( 2nd `  ( G `  m )
) )
178177breq2d 4224 . . . . . . . . . . . . 13  |-  ( ( H `  k )  =  ( G `  m )  ->  (
z  <  ( 2nd `  ( H `  k
) )  <->  z  <  ( 2nd `  ( G `
 m ) ) ) )
179176, 178anbi12d 692 . . . . . . . . . . . 12  |-  ( ( H `  k )  =  ( G `  m )  ->  (
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) )  <->  ( ( 1st `  ( G `  m ) )  < 
z  /\  z  <  ( 2nd `  ( G `
 m ) ) ) ) )
180179biimprcd 217 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  (
( H `  k
)  =  ( G `
 m )  -> 
( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
181180reximdv 2817 . . . . . . . . . 10  |-  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  ( E. k  e.  NN  ( H `  k )  =  ( G `  m )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
182174, 181syl5com 28 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k
) )  <  z  /\  z  <  ( 2nd `  ( H `  k
) ) ) ) )
183182rexlimdva 2830 . . . . . . . 8  |-  ( ph  ->  ( E. m  e.  NN  ( ( 1st `  ( G `  m
) )  <  z  /\  z  <  ( 2nd `  ( G `  m
) ) )  ->  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
184183ralimdv 2785 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m
) )  <  z  /\  z  <  ( 2nd `  ( G `  m
) ) )  ->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
185 ovolfioo 19364 . . . . . . . 8  |-  ( ( B  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
1864, 12, 185syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  <->  A. z  e.  B  E. m  e.  NN  ( ( 1st `  ( G `  m )
)  <  z  /\  z  <  ( 2nd `  ( G `  m )
) ) ) )
187 ovolfioo 19364 . . . . . . . 8  |-  ( ( B  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( B  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
1884, 27, 187syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  H )  <->  A. z  e.  B  E. k  e.  NN  ( ( 1st `  ( H `  k )
)  <  z  /\  z  <  ( 2nd `  ( H `  k )
) ) ) )
189184, 186, 1883imtr4d 260 . . . . . 6  |-  ( ph  ->  ( B  C_  U. ran  ( (,)  o.  G )  ->  B  C_  U. ran  ( (,)  o.  H ) ) )
19067, 189mpd 15 . . . . 5  |-  ( ph  ->  B  C_  U. ran  ( (,)  o.  H ) )
191153, 190unssd 3523 . . . 4  |-  ( ph  ->  ( A  u.  B
)  C_  U. ran  ( (,)  o.  H ) )
19229ovollb 19375 . . . 4  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( A  u.  B )  C_ 
U. ran  ( (,)  o.  H ) )  -> 
( vol * `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )
19327, 191, 192syl2anc 643 . . 3  |-  ( ph  ->  ( vol * `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )
194 ovollecl 19379 . . 3  |-  ( ( ( A  u.  B
)  C_  RR  /\  sup ( ran  U ,  RR* ,  <  )  e.  RR  /\  ( vol * `  ( A  u.  B
) )  <_  sup ( ran  U ,  RR* ,  <  ) )  -> 
( vol * `  ( A  u.  B
) )  e.  RR )
1955, 85, 193, 194syl3anc 1184 . 2  |-  ( ph  ->  ( vol * `  ( A  u.  B
) )  e.  RR )
19662rexrd 9134 . . . 4  |-  ( ph  ->  ( ( ( vol
* `  A )  +  ( vol * `  B ) )  +  C )  e.  RR* )
197 supxrleub 10905 . . . 4  |-  ( ( ran  U  C_  RR*  /\  (
( ( vol * `  A )  +  ( vol * `  B
) )  +  C
)  e.  RR* )  ->  ( sup ( ran 
U ,  RR* ,  <  )  <_  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C )  <->  A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
) ) )
19880, 196, 197syl2anc 643 . . 3  |-  ( ph  ->  ( sup ( ran 
U ,  RR* ,  <  )  <_  ( ( ( vol * `  A
)  +  ( vol
* `  B )
)  +  C )  <->  A. z  e.  ran  U  z  <_  ( (
( vol * `  A )  +  ( vol * `  B
) )  +  C
) ) )
19974, 198mpbird 224 . 2  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  <_  ( ( ( vol
* `  A )  +  ( vol * `  B ) )  +  C ) )
200195, 85, 62, 193, 199letrd 9227 1  |-  ( ph  ->  ( vol * `  ( A  u.  B
) )  <_  (
( ( vol * `  A )  +  ( vol * `  B
) )  +  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   ifcif 3739   U.cuni 4015   class class class wbr 4212    e. cmpt 4266    X. cxp 4876   dom cdm 4878   ran crn 4879    o. ccom 4882    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   1stc1st 6347   2ndc2nd 6348    ^m cmap 7018   supcsup 7445   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   (,)cioo 10916   [,)cico 10918    seq cseq 11323   abscabs 12039   vol
*covol 19359
This theorem is referenced by:  ovolunlem2  19394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-ioo 10920  df-ico 10922  df-fz 11044  df-fl 11202  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-ovol 19361
  Copyright terms: Public domain W3C validator