MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolval Unicode version

Theorem ovolval 19238
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolval  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Distinct variable group:    y, f, A
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reex 9015 . . 3  |-  RR  e.  _V
21elpw2 4306 . 2  |-  ( A  e.  ~P RR  <->  A  C_  RR )
3 sseq1 3313 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  f ) ) )
43anbi1d 686 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
54rexbidv 2671 . . . . . 6  |-  ( x  =  A  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
65rabbidv 2892 . . . . 5  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
7 ovolval.1 . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
86, 7syl6eqr 2438 . . . 4  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  M )
98supeq1d 7387 . . 3  |-  ( x  =  A  ->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  )  =  sup ( M ,  RR* ,  `'  <  ) )
10 df-ovol 19229 . . 3  |-  vol *  =  ( x  e. 
~P RR  |->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
11 xrltso 10667 . . . . 5  |-  <  Or  RR*
12 cnvso 5352 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 200 . . . 4  |-  `'  <  Or 
RR*
1413supex 7402 . . 3  |-  sup ( M ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5746 . 2  |-  ( A  e.  ~P RR  ->  ( vol * `  A
)  =  sup ( M ,  RR* ,  `'  <  ) )
162, 15sylbir 205 1  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2651   {crab 2654    i^i cin 3263    C_ wss 3264   ~Pcpw 3743   U.cuni 3958    Or wor 4444    X. cxp 4817   `'ccnv 4818   ran crn 4820    o. ccom 4823   ` cfv 5395  (class class class)co 6021    ^m cmap 6955   supcsup 7381   RRcr 8923   1c1 8925    + caddc 8927   RR*cxr 9053    < clt 9054    <_ cle 9055    - cmin 9224   NNcn 9933   (,)cioo 10849    seq cseq 11251   abscabs 11967   vol
*covol 19227
This theorem is referenced by:  ovolcl  19242  ovollb  19243  ovolgelb  19244  ovolge0  19245  ovolsslem  19248  ovolshft  19275  ovolicc2  19286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-pre-lttri 8998  ax-pre-lttrn 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-ovol 19229
  Copyright terms: Public domain W3C validator