MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolval Structured version   Unicode version

Theorem ovolval 19362
Description: The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
Assertion
Ref Expression
ovolval  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Distinct variable group:    y, f, A
Allowed substitution hints:    M( y, f)

Proof of Theorem ovolval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reex 9073 . . 3  |-  RR  e.  _V
21elpw2 4356 . 2  |-  ( A  e.  ~P RR  <->  A  C_  RR )
3 sseq1 3361 . . . . . . . 8  |-  ( x  =  A  ->  (
x  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  f ) ) )
43anbi1d 686 . . . . . . 7  |-  ( x  =  A  ->  (
( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <-> 
( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
54rexbidv 2718 . . . . . 6  |-  ( x  =  A  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) )  <->  E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) ) )
65rabbidv 2940 . . . . 5  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  { y  e. 
RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) } )
7 ovolval.1 . . . . 5  |-  M  =  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) }
86, 7syl6eqr 2485 . . . 4  |-  ( x  =  A  ->  { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  ) ) }  =  M )
98supeq1d 7443 . . 3  |-  ( x  =  A  ->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  )  =  sup ( M ,  RR* ,  `'  <  ) )
10 df-ovol 19353 . . 3  |-  vol *  =  ( x  e. 
~P RR  |->  sup ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  `'  <  ) )
11 xrltso 10726 . . . . 5  |-  <  Or  RR*
12 cnvso 5403 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 200 . . . 4  |-  `'  <  Or 
RR*
1413supex 7460 . . 3  |-  sup ( M ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5798 . 2  |-  ( A  e.  ~P RR  ->  ( vol * `  A
)  =  sup ( M ,  RR* ,  `'  <  ) )
162, 15sylbir 205 1  |-  ( A 
C_  RR  ->  ( vol
* `  A )  =  sup ( M ,  RR* ,  `'  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   {crab 2701    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   U.cuni 4007    Or wor 4494    X. cxp 4868   `'ccnv 4869   ran crn 4871    o. ccom 4874   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   supcsup 7437   RRcr 8981   1c1 8983    + caddc 8985   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   (,)cioo 10908    seq cseq 11315   abscabs 12031   vol
*covol 19351
This theorem is referenced by:  ovolcl  19366  ovollb  19367  ovolgelb  19368  ovolge0  19369  ovolsslem  19372  ovolshft  19399  ovolicc2  19410  ismblfin  26237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-ovol 19353
  Copyright terms: Public domain W3C validator