MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc Unicode version

Theorem ovprc 5885
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 5861 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 df-br 4024 . . . . 5  |-  ( A dom  F  B  <->  <. A ,  B >.  e.  dom  F
)
3 ovprc1.1 . . . . . 6  |-  Rel  dom  F
4 brrelex12 4726 . . . . . 6  |-  ( ( Rel  dom  F  /\  A dom  F  B )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
53, 4mpan 651 . . . . 5  |-  ( A dom  F  B  -> 
( A  e.  _V  /\  B  e.  _V )
)
62, 5sylbir 204 . . . 4  |-  ( <. A ,  B >.  e. 
dom  F  ->  ( A  e.  _V  /\  B  e.  _V ) )
76con3i 127 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  <. A ,  B >.  e.  dom  F )
8 ndmfv 5552 . . 3  |-  ( -. 
<. A ,  B >.  e. 
dom  F  ->  ( F `
 <. A ,  B >. )  =  (/) )
97, 8syl 15 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( F `  <. A ,  B >. )  =  (/) )
101, 9syl5eq 2327 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   <.cop 3643   class class class wbr 4023   dom cdm 4689   Rel wrel 4694   ` cfv 5255  (class class class)co 5858
This theorem is referenced by:  ovprc1  5886  ovprc2  5887  ovrcl  5888  elbasov  13192  firest  13337  xpcbas  13952  psrplusg  16126  psrmulr  16129  psrvscafval  16135  mplval  16173  opsrle  16217  opsrbaslem  16219  evlval  19408  mdegfval  19448  mdetfval  27487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-dm 4699  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator