MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0exALT Unicode version

Theorem p0exALT 4328
Description: The power set of the empty set (the ordinal 1) is a set. Alternate proof which is longer and quite different from the proof of p0ex 4327 if snexALT 4326 is expanded. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
p0exALT  |-  { (/) }  e.  _V

Proof of Theorem p0exALT
StepHypRef Expression
1 snexALT 4326 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1717   _Vcvv 2899   (/)c0 3571   {csn 3757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-v 2901  df-dif 3266  df-in 3270  df-ss 3277  df-nul 3572  df-pw 3744  df-sn 3763
  Copyright terms: Public domain W3C validator