Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Unicode version

Theorem paddass 30027
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be non-empty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a  |-  A  =  ( Atoms `  K )
paddass.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddass  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )

Proof of Theorem paddass
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  K  e.  HL )
2 simpr3 963 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Z  C_  A )
3 simpr2 962 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  Y  C_  A )
4 simpr1 961 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  ->  X  C_  A )
5 paddass.a . . . . 5  |-  A  =  ( Atoms `  K )
6 paddass.p . . . . 5  |-  .+  =  ( + P `  K
)
75, 6paddasslem18 30026 . . . 4  |-  ( ( K  e.  HL  /\  ( Z  C_  A  /\  Y  C_  A  /\  X  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
81, 2, 3, 4, 7syl13anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  ( Y  .+  X ) ) 
C_  ( ( Z 
.+  Y )  .+  X ) )
9 hllat 29553 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
105, 6paddcom 30002 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
119, 10syl3an1 1215 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
12113adant3r3 1162 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  Y
)  =  ( Y 
.+  X ) )
1312oveq1d 5873 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
145, 6paddssat 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  C_  A )
151, 3, 4, 14syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  X
)  C_  A )
165, 6paddcom 30002 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
179, 16syl3an1 1215 . . . . 5  |-  ( ( K  e.  HL  /\  ( Y  .+  X ) 
C_  A  /\  Z  C_  A )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Z  .+  ( Y  .+  X ) ) )
181, 15, 2, 17syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( Y  .+  X )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
1913, 18eqtrd 2315 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( Z 
.+  ( Y  .+  X ) ) )
205, 6paddcom 30002 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
219, 20syl3an1 1215 . . . . . 6  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  Z  C_  A )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
22213adant3r1 1160 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Y  .+  Z
)  =  ( Z 
.+  Y ) )
2322oveq2d 5874 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( X  .+  ( Z  .+  Y ) ) )
245, 6paddssat 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  C_  A  /\  Y  C_  A )  ->  ( Z  .+  Y )  C_  A )
251, 2, 3, 24syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( Z  .+  Y
)  C_  A )
265, 6paddcom 30002 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
279, 26syl3an1 1215 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  ( Z  .+  Y )  C_  A )  ->  ( X  .+  ( Z  .+  Y ) )  =  ( ( Z  .+  Y )  .+  X
) )
281, 4, 25, 27syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Z  .+  Y ) )  =  ( ( Z 
.+  Y )  .+  X ) )
2923, 28eqtrd 2315 . . 3  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) )  =  ( ( Z 
.+  Y )  .+  X ) )
308, 19, 293sstr4d 3221 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  C_  ( X  .+  ( Y  .+  Z
) ) )
315, 6paddasslem18 30026 . 2  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( X  .+  ( Y  .+  Z ) ) 
C_  ( ( X 
.+  Y )  .+  Z ) )
3230, 31eqssd 3196 1  |-  ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )  -> 
( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Latclat 14151   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984
This theorem is referenced by:  padd12N  30028  padd4N  30029  pmodl42N  30040  pmapjlln1  30044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-padd 29985
  Copyright terms: Public domain W3C validator