Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Unicode version

Theorem paddasslem10 30640
Description: Lemma for paddass 30649. Use paddasslem4 30634 to eliminate  s from paddasslem9 30639. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem10  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl11 1030 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl3l 1010 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
3 simpl3r 1011 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
41, 2, 33jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  p  e.  A  /\  r  e.  A ) )
5 an6 1261 . . . . . 6  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  <->  ( ( X  C_  A  /\  x  e.  X )  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) ) )
6 ssel2 3188 . . . . . . 7  |-  ( ( X  C_  A  /\  x  e.  X )  ->  x  e.  A )
7 ssel2 3188 . . . . . . 7  |-  ( ( Y  C_  A  /\  y  e.  Y )  ->  y  e.  A )
8 ssel2 3188 . . . . . . 7  |-  ( ( Z  C_  A  /\  z  e.  Z )  ->  z  e.  A )
96, 7, 83anim123i 1137 . . . . . 6  |-  ( ( ( X  C_  A  /\  x  e.  X
)  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
105, 9sylbi 187 . . . . 5  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)
11103ad2antl2 1118 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
1211adantrr 697 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
13 simpl12 1031 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  =/=  z )
14 simpl13 1032 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =/=  y )
15 simprr1 1003 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  -.  r  .<_  ( x  .\/  y
) )
1613, 14, 153jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
) ) )
17 simprr2 1004 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
18 simprr3 1005 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
19 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
20 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
21 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
2219, 20, 21paddasslem4 30634 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x 
.\/  y ) ) )  /\  ( p 
.<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
234, 12, 16, 17, 18, 22syl32anc 1190 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
24 simpl2 959 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A
) )
25 simpl3 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  e.  A  /\  r  e.  A ) )
261, 24, 253jca 1132 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
2726adantr 451 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
28 simplrl 736 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )
2915, 18jca 518 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) ) )
3029adantr 451 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z ) ) )
31 simprl 732 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  e.  A
)
32 simprrl 740 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( x 
.\/  y ) )
33 simprrr 741 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( p 
.\/  z ) )
3431, 32, 333jca 1132 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
.\/  z ) ) )
35 paddasslem.p . . . . . 6  |-  .+  =  ( + P `  K
)
3619, 20, 21, 35paddasslem9 30639 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3727, 28, 30, 34, 36syl13anc 1184 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3837exp32 588 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( s  e.  A  ->  ( ( s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) ) )
3938rexlimdv 2679 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( E. s  e.  A  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
4023, 39mpd 14 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   Atomscatm 30075   HLchlt 30162   + Pcpadd 30606
This theorem is referenced by:  paddasslem14  30644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-padd 30607
  Copyright terms: Public domain W3C validator