Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Unicode version

Theorem paddasslem10 29994
Description: Lemma for paddass 30003. Use paddasslem4 29988 to eliminate  s from paddasslem9 29993. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem10  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl11 1032 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl3l 1012 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
3 simpl3r 1013 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
41, 2, 33jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  p  e.  A  /\  r  e.  A ) )
5 an6 1263 . . . . . 6  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  <->  ( ( X  C_  A  /\  x  e.  X )  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) ) )
6 ssel2 3279 . . . . . . 7  |-  ( ( X  C_  A  /\  x  e.  X )  ->  x  e.  A )
7 ssel2 3279 . . . . . . 7  |-  ( ( Y  C_  A  /\  y  e.  Y )  ->  y  e.  A )
8 ssel2 3279 . . . . . . 7  |-  ( ( Z  C_  A  /\  z  e.  Z )  ->  z  e.  A )
96, 7, 83anim123i 1139 . . . . . 6  |-  ( ( ( X  C_  A  /\  x  e.  X
)  /\  ( Y  C_  A  /\  y  e.  Y )  /\  ( Z  C_  A  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
105, 9sylbi 188 . . . . 5  |-  ( ( ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)
11103ad2antl2 1120 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )  -> 
( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )
1211adantrr 698 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
13 simpl12 1033 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  =/=  z )
14 simpl13 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =/=  y )
15 simprr1 1005 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  -.  r  .<_  ( x  .\/  y
) )
1613, 14, 153jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
) ) )
17 simprr2 1006 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
18 simprr3 1007 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
19 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
20 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
21 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
2219, 20, 21paddasslem4 29988 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x 
.\/  y ) ) )  /\  ( p 
.<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
234, 12, 16, 17, 18, 22syl32anc 1192 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y
)  /\  s  .<_  ( p  .\/  z ) ) )
24 simpl2 961 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A
) )
25 simpl3 962 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( p  e.  A  /\  r  e.  A ) )
261, 24, 253jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
2726adantr 452 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
) )
28 simplrl 737 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z ) )
2915, 18jca 519 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) ) )
3029adantr 452 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z ) ) )
31 simprl 733 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  e.  A
)
32 simprrl 741 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( x 
.\/  y ) )
33 simprrr 742 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  s  .<_  ( p 
.\/  z ) )
3431, 32, 333jca 1134 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  ( s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
.\/  z ) ) )
35 paddasslem.p . . . 4  |-  .+  =  ( + P `  K
)
3619, 20, 21, 35paddasslem9 29993 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
) )  /\  (
s  e.  A  /\  s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3727, 28, 30, 34, 36syl13anc 1186 . 2  |-  ( ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  /\  ( s  e.  A  /\  (
s  .<_  ( x  .\/  y )  /\  s  .<_  ( p  .\/  z
) ) ) )  ->  p  e.  ( ( X  .+  Y
)  .+  Z )
)
3823, 37rexlimddv 2770 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   E.wrex 2643    C_ wss 3256   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   lecple 13456   joincjn 14321   Atomscatm 29429   HLchlt 29516   + Pcpadd 29960
This theorem is referenced by:  paddasslem14  29998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-padd 29961
  Copyright terms: Public domain W3C validator