Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem12 Unicode version

Theorem paddasslem12 30020
Description: Lemma for paddass 30027. The case when  x  =  y. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem12  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem12
StepHypRef Expression
1 simpl1l 1006 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  HL )
2 simpl21 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  X  C_  A
)
3 simpl22 1034 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . . 6  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . . 6  |-  .+  =  ( + P `  K
)
64, 5paddssat 30003 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Z  C_  A
)
91, 7, 83jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( K  e.  HL  /\  ( X 
.+  Y )  C_  A  /\  Z  C_  A
) )
104, 5sspadd2 30005 . . . 4  |-  ( ( K  e.  HL  /\  Y  C_  A  /\  X  C_  A )  ->  Y  C_  ( X  .+  Y
) )
111, 3, 2, 10syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  Y  C_  ( X  .+  Y ) )
124, 5paddss1 30006 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( Y  C_  ( X  .+  Y )  ->  ( Y  .+  Z )  C_  ( ( X  .+  Y )  .+  Z
) ) )
139, 11, 12sylc 56 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( Y  .+  Z )  C_  (
( X  .+  Y
)  .+  Z )
)
14 hllat 29553 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
151, 14syl 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  K  e.  Lat )
16 simprll 738 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  Y )
17 simprlr 739 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  Z )
18 simpl3l 1010 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  A )
19 eqid 2283 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
20 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
2119, 4atbase 29479 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
2218, 21syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Base `  K )
)
233, 16sseldd 3181 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  A )
2419, 4atbase 29479 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
2523, 24syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  e.  ( Base `  K )
)
26 simpl3r 1011 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  A )
2719, 4atbase 29479 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2826, 27syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  e.  ( Base `  K )
)
29 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
3019, 29latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
y  .\/  r )  e.  ( Base `  K
) )
3115, 25, 28, 30syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  e.  (
Base `  K )
)
328, 17sseldd 3181 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  A )
3319, 4atbase 29479 . . . . . 6  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
3432, 33syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  z  e.  ( Base `  K )
)
3519, 29latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  (
y  .\/  z )  e.  ( Base `  K
) )
3615, 25, 34, 35syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  z )  e.  (
Base `  K )
)
37 simpl1r 1007 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  x  =  y )
38 simprrl 740 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
39 oveq1 5865 . . . . . . 7  |-  ( x  =  y  ->  (
x  .\/  r )  =  ( y  .\/  r ) )
4039breq2d 4035 . . . . . 6  |-  ( x  =  y  ->  (
p  .<_  ( x  .\/  r )  <->  p  .<_  ( y  .\/  r ) ) )
4140biimpa 470 . . . . 5  |-  ( ( x  =  y  /\  p  .<_  ( x  .\/  r ) )  ->  p  .<_  ( y  .\/  r ) )
4237, 38, 41syl2anc 642 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  r ) )
4319, 20, 29latlej1 14166 . . . . . 6  |-  ( ( K  e.  Lat  /\  y  e.  ( Base `  K )  /\  z  e.  ( Base `  K
) )  ->  y  .<_  ( y  .\/  z
) )
4415, 25, 34, 43syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  y  .<_  ( y  .\/  z ) )
45 simprrr 741 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  r  .<_  ( y  .\/  z ) )
4619, 20, 29latjle12 14168 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( y  e.  (
Base `  K )  /\  r  e.  ( Base `  K )  /\  ( y  .\/  z
)  e.  ( Base `  K ) ) )  ->  ( ( y 
.<_  ( y  .\/  z
)  /\  r  .<_  ( y  .\/  z ) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4715, 25, 28, 36, 46syl13anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( (
y  .<_  ( y  .\/  z )  /\  r  .<_  ( y  .\/  z
) )  <->  ( y  .\/  r )  .<_  ( y 
.\/  z ) ) )
4844, 45, 47mpbi2and 887 . . . 4  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  ( y  .\/  r )  .<_  ( y 
.\/  z ) )
4919, 20, 15, 22, 31, 36, 42, 48lattrd 14164 . . 3  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  .<_  ( y  .\/  z ) )
5020, 29, 4, 5elpaddri 29991 . . 3  |-  ( ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  /\  ( y  e.  Y  /\  z  e.  Z
)  /\  ( p  e.  A  /\  p  .<_  ( y  .\/  z
) ) )  ->  p  e.  ( Y  .+  Z ) )
5115, 3, 8, 16, 17, 18, 49, 50syl322anc 1210 . 2  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( Y  .+  Z ) )
5213, 51sseldd 3181 1  |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984
This theorem is referenced by:  paddasslem14  30022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-lat 14152  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-padd 29985
  Copyright terms: Public domain W3C validator