Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem13 Unicode version

Theorem paddasslem13 30021
Description: Lemma for paddass 30027. The case when  r 
.<_  ( x  .\/  y
). (Unlike the proof in Maeda and Maeda, we don't need  x  =/=  y.) (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem13  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem13
StepHypRef Expression
1 simpl1l 1006 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  HL )
2 simpl21 1033 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  X  C_  A
)
3 simpl22 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . 5  |-  .+  =  ( + P `  K
)
64, 5paddssat 30003 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1035 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Z  C_  A
)
94, 5sspadd1 30004 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( X  .+  Y )  C_  ( ( X  .+  Y )  .+  Z
) )
101, 7, 8, 9syl3anc 1182 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  (
( X  .+  Y
)  .+  Z )
)
11 hllat 29553 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
121, 11syl 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  Lat )
13 simprll 738 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  X )
14 simprlr 739 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  Y )
15 simpl3l 1010 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  A )
16 eqid 2283 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
17 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
1816, 4atbase 29479 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1915, 18syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( Base `  K )
)
202, 13sseldd 3181 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  A )
2116, 4atbase 29479 . . . . . 6  |-  ( x  e.  A  ->  x  e.  ( Base `  K
) )
2220, 21syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  ( Base `  K )
)
23 simpl3r 1011 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  A )
2416, 4atbase 29479 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2523, 24syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  ( Base `  K )
)
26 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
2716, 26latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
x  .\/  r )  e.  ( Base `  K
) )
2812, 22, 25, 27syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  e.  (
Base `  K )
)
293, 14sseldd 3181 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  A )
3016, 4atbase 29479 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
3129, 30syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  ( Base `  K )
)
3216, 26latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x  .\/  y )  e.  ( Base `  K
) )
3312, 22, 31, 32syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  y )  e.  (
Base `  K )
)
34 simprrr 741 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
3516, 17, 26latlej1 14166 . . . . . 6  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  x  .<_  ( x  .\/  y
) )
3612, 22, 31, 35syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  .<_  ( x  .\/  y ) )
37 simprrl 740 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  .<_  ( x  .\/  y ) )
3816, 17, 26latjle12 14168 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  ( Base `  K )  /\  r  e.  ( Base `  K )  /\  (
x  .\/  y )  e.  ( Base `  K
) ) )  -> 
( ( x  .<_  ( x  .\/  y )  /\  r  .<_  ( x 
.\/  y ) )  <-> 
( x  .\/  r
)  .<_  ( x  .\/  y ) ) )
3912, 22, 25, 33, 38syl13anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( (
x  .<_  ( x  .\/  y )  /\  r  .<_  ( x  .\/  y
) )  <->  ( x  .\/  r )  .<_  ( x 
.\/  y ) ) )
4036, 37, 39mpbi2and 887 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  .<_  ( x 
.\/  y ) )
4116, 17, 12, 19, 28, 33, 34, 40lattrd 14164 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  y ) )
4217, 26, 4, 5elpaddri 29991 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( x  e.  X  /\  y  e.  Y
)  /\  ( p  e.  A  /\  p  .<_  ( x  .\/  y
) ) )  ->  p  e.  ( X  .+  Y ) )
4312, 2, 3, 13, 14, 15, 41, 42syl322anc 1210 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( X  .+  Y ) )
4410, 43sseldd 3181 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984
This theorem is referenced by:  paddasslem14  30022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-lat 14152  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-padd 29985
  Copyright terms: Public domain W3C validator