Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem13 Unicode version

Theorem paddasslem13 29948
Description: Lemma for paddass 29954. The case when  r 
.<_  ( x  .\/  y
). (Unlike the proof in Maeda and Maeda, we don't need  x  =/=  y.) (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem13  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem13
StepHypRef Expression
1 simpl1l 1008 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  HL )
2 simpl21 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  X  C_  A
)
3 simpl22 1036 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Y  C_  A
)
4 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 paddasslem.p . . . . 5  |-  .+  =  ( + P `  K
)
64, 5paddssat 29930 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
71, 2, 3, 6syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  A
)
8 simpl23 1037 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  Z  C_  A
)
94, 5sspadd1 29931 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  Y ) 
C_  A  /\  Z  C_  A )  ->  ( X  .+  Y )  C_  ( ( X  .+  Y )  .+  Z
) )
101, 7, 8, 9syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( X  .+  Y )  C_  (
( X  .+  Y
)  .+  Z )
)
11 hllat 29480 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
121, 11syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  K  e.  Lat )
13 simprll 739 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  X )
14 simprlr 740 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  Y )
15 simpl3l 1012 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  A )
16 eqid 2389 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
17 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
1816, 4atbase 29406 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
1915, 18syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( Base `  K )
)
202, 13sseldd 3294 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  A )
2116, 4atbase 29406 . . . . . 6  |-  ( x  e.  A  ->  x  e.  ( Base `  K
) )
2220, 21syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  e.  ( Base `  K )
)
23 simpl3r 1013 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  A )
2416, 4atbase 29406 . . . . . 6  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
2523, 24syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  e.  ( Base `  K )
)
26 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
2716, 26latjcl 14408 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
x  .\/  r )  e.  ( Base `  K
) )
2812, 22, 25, 27syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  e.  (
Base `  K )
)
293, 14sseldd 3294 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  A )
3016, 4atbase 29406 . . . . . 6  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
3129, 30syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  y  e.  ( Base `  K )
)
3216, 26latjcl 14408 . . . . 5  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x  .\/  y )  e.  ( Base `  K
) )
3312, 22, 31, 32syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  y )  e.  (
Base `  K )
)
34 simprrr 742 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  r ) )
3516, 17, 26latlej1 14418 . . . . . 6  |-  ( ( K  e.  Lat  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  x  .<_  ( x  .\/  y
) )
3612, 22, 31, 35syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  x  .<_  ( x  .\/  y ) )
37 simprrl 741 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  r  .<_  ( x  .\/  y ) )
3816, 17, 26latjle12 14420 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  ( Base `  K )  /\  r  e.  ( Base `  K )  /\  (
x  .\/  y )  e.  ( Base `  K
) ) )  -> 
( ( x  .<_  ( x  .\/  y )  /\  r  .<_  ( x 
.\/  y ) )  <-> 
( x  .\/  r
)  .<_  ( x  .\/  y ) ) )
3912, 22, 25, 33, 38syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( (
x  .<_  ( x  .\/  y )  /\  r  .<_  ( x  .\/  y
) )  <->  ( x  .\/  r )  .<_  ( x 
.\/  y ) ) )
4036, 37, 39mpbi2and 888 . . . 4  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  ( x  .\/  r )  .<_  ( x 
.\/  y ) )
4116, 17, 12, 19, 28, 33, 34, 40lattrd 14416 . . 3  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  .<_  ( x  .\/  y ) )
4217, 26, 4, 5elpaddri 29918 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( x  e.  X  /\  y  e.  Y
)  /\  ( p  e.  A  /\  p  .<_  ( x  .\/  y
) ) )  ->  p  e.  ( X  .+  Y ) )
4312, 2, 3, 13, 14, 15, 41, 42syl322anc 1212 . 2  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( X  .+  Y ) )
4410, 43sseldd 3294 1  |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  (
p  e.  A  /\  r  e.  A )
)  /\  ( (
x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
.\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552    C_ wss 3265   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   Basecbs 13398   lecple 13465   joincjn 14330   Latclat 14403   Atomscatm 29380   HLchlt 29467   + Pcpadd 29911
This theorem is referenced by:  paddasslem14  29949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-poset 14332  df-lub 14360  df-join 14362  df-lat 14404  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-padd 29912
  Copyright terms: Public domain W3C validator