Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem15 Unicode version

Theorem paddasslem15 30328
Description: Lemma for paddass 30332. Use elpaddn0 30294 to eliminate  y and  z from paddasslem14 30327. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
paddasslem.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddasslem15  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )

Proof of Theorem paddasslem15
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2r 1017 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  r  e.  ( Y  .+  Z ) )
2 simpl1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  K  e.  HL )
3 hllat 29858 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  K  e.  Lat )
5 simpl22 1036 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  Y  C_  A
)
6 simpl23 1037 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  Z  C_  A
)
7 simpl3 962 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )
8 paddasslem.l . . . . 5  |-  .<_  =  ( le `  K )
9 paddasslem.j . . . . 5  |-  .\/  =  ( join `  K )
10 paddasslem.a . . . . 5  |-  A  =  ( Atoms `  K )
11 paddasslem.p . . . . 5  |-  .+  =  ( + P `  K
)
128, 9, 10, 11elpaddn0 30294 . . . 4  |-  ( ( ( K  e.  Lat  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  -> 
( r  e.  ( Y  .+  Z )  <-> 
( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) ) )
134, 5, 6, 7, 12syl31anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  ( Y  .+  Z
)  <->  ( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) ) )
141, 13mpbid 202 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z ) ) )
15 simp11 987 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  K  e.  HL )
16 simp12 988 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) )
17 simp21 990 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  e.  A )
18 simp31 993 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
r  e.  A )
1917, 18jca 519 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( p  e.  A  /\  r  e.  A
) )
20 simp22l 1076 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  x  e.  X )
21 simp32l 1082 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
y  e.  Y )
22 simp32r 1083 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
z  e.  Z )
2320, 21, 223jca 1134 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
) )
24 simp23 992 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  .<_  ( x  .\/  r ) )
25 simp33 995 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
r  .<_  ( y  .\/  z ) )
2624, 25jca 519 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  -> 
( p  .<_  ( x 
.\/  r )  /\  r  .<_  ( y  .\/  z ) ) )
278, 9, 10, 11paddasslem14 30327 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A
) )  /\  (
( x  e.  X  /\  y  e.  Y  /\  z  e.  Z
)  /\  ( p  .<_  ( x  .\/  r
)  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
2815, 16, 19, 23, 26, 27syl32anc 1192 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) )  /\  ( r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z )  /\  r  .<_  ( y  .\/  z
) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
29283expia 1155 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( (
r  e.  A  /\  ( y  e.  Y  /\  z  e.  Z
)  /\  r  .<_  ( y  .\/  z ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
30293expd 1170 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( r  e.  A  ->  ( ( y  e.  Y  /\  z  e.  Z )  ->  ( r  .<_  ( y 
.\/  z )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) ) ) ) )
3130imp 419 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  (
p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  /\  r  e.  A )  ->  (
( y  e.  Y  /\  z  e.  Z
)  ->  ( r  .<_  ( y  .\/  z
)  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) ) )
3231rexlimdvv 2804 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( X 
C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  (
p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  /\  r  e.  A )  ->  ( E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
3332expimpd 587 . 2  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  ( (
r  e.  A  /\  E. y  e.  Y  E. z  e.  Z  r  .<_  ( y  .\/  z
) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) ) )
3414, 33mpd 15 1  |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( Y  =/=  (/)  /\  Z  =/=  (/) ) )  /\  ( p  e.  A  /\  ( x  e.  X  /\  r  e.  ( Y  .+  Z ) )  /\  p  .<_  ( x 
.\/  r ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   E.wrex 2675    C_ wss 3288   (/)c0 3596   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   lecple 13499   joincjn 14364   Latclat 14437   Atomscatm 29758   HLchlt 29845   + Pcpadd 30289
This theorem is referenced by:  paddasslem16  30329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-lat 14438  df-clat 14500  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-padd 30290
  Copyright terms: Public domain W3C validator