Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem2 Structured version   Unicode version

Theorem paddasslem2 30618
Description: Lemma for paddass 30635. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
paddasslem2  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  z  .<_  ( r 
.\/  y ) )

Proof of Theorem paddasslem2
StepHypRef Expression
1 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  K  e.  HL )
2 simp1r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  r  e.  A
)
3 simp23 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  z  e.  A
)
4 simp22 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  y  e.  A
)
52, 3, 43jca 1134 . . . 4  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  ( r  e.  A  /\  z  e.  A  /\  y  e.  A ) )
6 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  x  e.  A
)
7 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  -.  r  .<_  ( x  .\/  y ) )
8 paddasslem.l . . . . . 6  |-  .<_  =  ( le `  K )
9 paddasslem.j . . . . . 6  |-  .\/  =  ( join `  K )
10 paddasslem.a . . . . . 6  |-  A  =  ( Atoms `  K )
118, 9, 10atnlej2 30177 . . . . 5  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  x  e.  A  /\  y  e.  A
)  /\  -.  r  .<_  ( x  .\/  y
) )  ->  r  =/=  y )
121, 2, 6, 4, 7, 11syl131anc 1197 . . . 4  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  r  =/=  y
)
131, 5, 123jca 1134 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  ( K  e.  HL  /\  ( r  e.  A  /\  z  e.  A  /\  y  e.  A )  /\  r  =/=  y ) )
14 simp3r 986 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  r  .<_  ( y 
.\/  z ) )
158, 9, 10hlatexch1 30192 . . 3  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  z  e.  A  /\  y  e.  A
)  /\  r  =/=  y )  ->  (
r  .<_  ( y  .\/  z )  ->  z  .<_  ( y  .\/  r
) ) )
1613, 14, 15sylc 58 . 2  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  z  .<_  ( y 
.\/  r ) )
17 hllat 30161 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  K  e.  Lat )
19 eqid 2436 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2019, 10atbase 30087 . . . 4  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
212, 20syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  r  e.  (
Base `  K )
)
2219, 10atbase 30087 . . . 4  |-  ( y  e.  A  ->  y  e.  ( Base `  K
) )
234, 22syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  y  e.  (
Base `  K )
)
2419, 9latjcom 14488 . . 3  |-  ( ( K  e.  Lat  /\  r  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
r  .\/  y )  =  ( y  .\/  r ) )
2518, 21, 23, 24syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  ( r  .\/  y )  =  ( y  .\/  r ) )
2616, 25breqtrrd 4238 1  |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z ) ) )  ->  z  .<_  ( r 
.\/  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   Latclat 14474   Atomscatm 30061   HLchlt 30148
This theorem is referenced by:  paddasslem4  30620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-join 14433  df-lat 14475  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149
  Copyright terms: Public domain W3C validator