Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem7 Structured version   Unicode version

Theorem paddasslem7 30697
Description: Lemma for paddass 30709. Combine paddasslem5 30695 and paddasslem6 30696. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
paddasslem7  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )

Proof of Theorem paddasslem7
StepHypRef Expression
1 simpl1 961 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  K  e.  HL )
2 simpl21 1036 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  e.  A )
3 simpl23 1038 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  e.  A )
42, 3jca 520 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( p  e.  A  /\  s  e.  A ) )
5 simpl33 1041 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  z  e.  A )
6 simpl22 1037 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  r  e.  A )
7 simpl3 963 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
8 simprl 734 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
)  /\  s  .<_  ( x  .\/  y ) ) )
9 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
10 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
11 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
129, 10, 11paddasslem5 30695 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x  .\/  y
) ) )  -> 
s  =/=  z )
131, 6, 7, 8, 12syl31anc 1188 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  =/=  z )
14 simprr 735 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  .<_  ( p  .\/  z ) )
159, 10, 11paddasslem6 30696 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  s  e.  A
)  /\  z  e.  A )  /\  (
s  =/=  z  /\  s  .<_  ( p  .\/  z ) ) )  ->  p  .<_  ( s 
.\/  z ) )
161, 4, 5, 13, 14, 15syl32anc 1193 1  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   lecple 13541   joincjn 14406   Atomscatm 30135   HLchlt 30222
This theorem is referenced by:  paddasslem9  30699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-join 14438  df-lat 14480  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223
  Copyright terms: Public domain W3C validator