Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem7 Unicode version

Theorem paddasslem7 30084
Description: Lemma for paddass 30096. Combine paddasslem5 30082 and paddasslem6 30083. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l  |-  .<_  =  ( le `  K )
paddasslem.j  |-  .\/  =  ( join `  K )
paddasslem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
paddasslem7  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )

Proof of Theorem paddasslem7
StepHypRef Expression
1 simpl1 958 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  K  e.  HL )
2 simpl21 1033 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  e.  A )
3 simpl23 1035 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  e.  A )
42, 3jca 518 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( p  e.  A  /\  s  e.  A ) )
5 simpl33 1038 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  z  e.  A )
6 simpl22 1034 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  r  e.  A )
7 simpl3 960 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )
8 simprl 732 . . 3  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z
)  /\  s  .<_  ( x  .\/  y ) ) )
9 paddasslem.l . . . 4  |-  .<_  =  ( le `  K )
10 paddasslem.j . . . 4  |-  .\/  =  ( join `  K )
11 paddasslem.a . . . 4  |-  A  =  ( Atoms `  K )
129, 10, 11paddasslem5 30082 . . 3  |-  ( ( ( K  e.  HL  /\  r  e.  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  /\  ( -.  r  .<_  ( x 
.\/  y )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x  .\/  y
) ) )  -> 
s  =/=  z )
131, 6, 7, 8, 12syl31anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  =/=  z )
14 simprr 733 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  s  .<_  ( p  .\/  z ) )
159, 10, 11paddasslem6 30083 . 2  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  s  e.  A
)  /\  z  e.  A )  /\  (
s  =/=  z  /\  s  .<_  ( p  .\/  z ) ) )  ->  p  .<_  ( s 
.\/  z ) )
161, 4, 5, 13, 14, 15syl32anc 1190 1  |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
)  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
.\/  y ) )  /\  s  .<_  ( p 
.\/  z ) ) )  ->  p  .<_  ( s  .\/  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   lecple 13312   joincjn 14177   Atomscatm 29522   HLchlt 29609
This theorem is referenced by:  paddasslem9  30086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-poset 14179  df-plt 14191  df-lub 14207  df-join 14209  df-lat 14251  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610
  Copyright terms: Public domain W3C validator