Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddcom Unicode version

Theorem paddcom 30624
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddcom  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem paddcom
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 3332 . . . 4  |-  ( X  u.  Y )  =  ( Y  u.  X
)
21a1i 10 . . 3  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  =  ( Y  u.  X ) )
3 simpl1 958 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  K  e.  Lat )
4 simpl2 959 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  X  C_  A )
5 simprl 732 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  X )
64, 5sseldd 3194 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  A )
7 eqid 2296 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
8 padd0.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
97, 8atbase 30101 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
106, 9syl 15 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  ( Base `  K
) )
11 simpl3 960 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  Y  C_  A )
12 simprr 733 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  Y )
1311, 12sseldd 3194 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  A )
147, 8atbase 30101 . . . . . . . . 9  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1513, 14syl 15 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  ( Base `  K
) )
16 eqid 2296 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
177, 16latjcom 14181 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  q  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
q ( join `  K
) r )  =  ( r ( join `  K ) q ) )
183, 10, 15, 17syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  (
q ( join `  K
) r )  =  ( r ( join `  K ) q ) )
1918breq2d 4051 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  (
p ( le `  K ) ( q ( join `  K
) r )  <->  p ( le `  K ) ( r ( join `  K
) q ) ) )
20192rexbidva 2597 . . . . 5  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r )  <->  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( r ( join `  K
) q ) ) )
21 rexcom 2714 . . . . 5  |-  ( E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( r (
join `  K )
q )  <->  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) )
2220, 21syl6bb 252 . . . 4  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r )  <->  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) ) )
2322rabbidv 2793 . . 3  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) }  =  { p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } )
242, 23uneq12d 3343 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  (
( X  u.  Y
)  u.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) } )  =  ( ( Y  u.  X )  u. 
{ p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
25 eqid 2296 . . 3  |-  ( le
`  K )  =  ( le `  K
)
26 padd0.p . . 3  |-  .+  =  ( + P `  K
)
2725, 16, 8, 26paddval 30609 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } ) )
2825, 16, 8, 26paddval 30609 . . 3  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  =  ( ( Y  u.  X )  u.  {
p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
29283com23 1157 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( Y  .+  X )  =  ( ( Y  u.  X )  u.  {
p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
3024, 27, 293eqtr4d 2338 1  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560    u. cun 3163    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   + Pcpadd 30606
This theorem is referenced by:  paddass  30649  padd12N  30650  pmod2iN  30660  pmodN  30661  pmapjat2  30665
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-join 14126  df-lat 14168  df-ats 30079  df-padd 30607
  Copyright terms: Public domain W3C validator