Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddfval Structured version   Unicode version

Theorem paddfval 30531
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l  |-  .<_  =  ( le `  K )
paddfval.j  |-  .\/  =  ( join `  K )
paddfval.a  |-  A  =  ( Atoms `  K )
paddfval.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddfval  |-  ( K  e.  B  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
Distinct variable groups:    m, n, p, A    m, q, r, K, n, p
Allowed substitution hints:    A( r, q)    B( m, n, r, q, p)    .+ ( m, n, r, q, p)    .\/ ( m, n, r, q, p)    .<_ ( m, n, r, q, p)

Proof of Theorem paddfval
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 elex 2956 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 paddfval.p . . 3  |-  .+  =  ( + P `  K
)
3 fveq2 5720 . . . . . . 7  |-  ( h  =  K  ->  ( Atoms `  h )  =  ( Atoms `  K )
)
4 paddfval.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2485 . . . . . 6  |-  ( h  =  K  ->  ( Atoms `  h )  =  A )
65pweqd 3796 . . . . 5  |-  ( h  =  K  ->  ~P ( Atoms `  h )  =  ~P A )
7 eqidd 2436 . . . . . . . . 9  |-  ( h  =  K  ->  p  =  p )
8 fveq2 5720 . . . . . . . . . 10  |-  ( h  =  K  ->  ( le `  h )  =  ( le `  K
) )
9 paddfval.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2485 . . . . . . . . 9  |-  ( h  =  K  ->  ( le `  h )  = 
.<_  )
11 fveq2 5720 . . . . . . . . . . 11  |-  ( h  =  K  ->  ( join `  h )  =  ( join `  K
) )
12 paddfval.j . . . . . . . . . . 11  |-  .\/  =  ( join `  K )
1311, 12syl6eqr 2485 . . . . . . . . . 10  |-  ( h  =  K  ->  ( join `  h )  = 
.\/  )
1413oveqd 6090 . . . . . . . . 9  |-  ( h  =  K  ->  (
q ( join `  h
) r )  =  ( q  .\/  r
) )
157, 10, 14breq123d 4218 . . . . . . . 8  |-  ( h  =  K  ->  (
p ( le `  h ) ( q ( join `  h
) r )  <->  p  .<_  ( q  .\/  r ) ) )
16152rexbidv 2740 . . . . . . 7  |-  ( h  =  K  ->  ( E. q  e.  m  E. r  e.  n  p ( le `  h ) ( q ( join `  h
) r )  <->  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) ) )
175, 16rabeqbidv 2943 . . . . . 6  |-  ( h  =  K  ->  { p  e.  ( Atoms `  h )  |  E. q  e.  m  E. r  e.  n  p ( le `  h ) ( q ( join `  h
) r ) }  =  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } )
1817uneq2d 3493 . . . . 5  |-  ( h  =  K  ->  (
( m  u.  n
)  u.  { p  e.  ( Atoms `  h )  |  E. q  e.  m  E. r  e.  n  p ( le `  h ) ( q ( join `  h
) r ) } )  =  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) )
196, 6, 18mpt2eq123dv 6128 . . . 4  |-  ( h  =  K  ->  (
m  e.  ~P ( Atoms `  h ) ,  n  e.  ~P ( Atoms `  h )  |->  ( ( m  u.  n
)  u.  { p  e.  ( Atoms `  h )  |  E. q  e.  m  E. r  e.  n  p ( le `  h ) ( q ( join `  h
) r ) } ) )  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u. 
{ p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
20 df-padd 30530 . . . 4  |-  + P  =  ( h  e. 
_V  |->  ( m  e. 
~P ( Atoms `  h
) ,  n  e. 
~P ( Atoms `  h
)  |->  ( ( m  u.  n )  u. 
{ p  e.  (
Atoms `  h )  |  E. q  e.  m  E. r  e.  n  p ( le `  h ) ( q ( join `  h
) r ) } ) ) )
21 fvex 5734 . . . . . . 7  |-  ( Atoms `  K )  e.  _V
224, 21eqeltri 2505 . . . . . 6  |-  A  e. 
_V
2322pwex 4374 . . . . 5  |-  ~P A  e.  _V
2423, 23mpt2ex 6417 . . . 4  |-  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  {
p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) )  e.  _V
2519, 20, 24fvmpt 5798 . . 3  |-  ( K  e.  _V  ->  ( + P `  K )  =  ( m  e. 
~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
262, 25syl5eq 2479 . 2  |-  ( K  e.  _V  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
271, 26syl 16 1  |-  ( K  e.  B  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   E.wrex 2698   {crab 2701   _Vcvv 2948    u. cun 3310   ~Pcpw 3791   class class class wbr 4204   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   lecple 13528   joincjn 14393   Atomscatm 29998   + Pcpadd 30529
This theorem is referenced by:  paddval  30532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-padd 30530
  Copyright terms: Public domain W3C validator