Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Unicode version

Theorem paddunN 30116
Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 5529.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a  |-  A  =  ( Atoms `  K )
paddun.p  |-  .+  =  ( + P `  K
)
paddun.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
paddunN  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  (  ._|_  `  ( S  u.  T ) ) )

Proof of Theorem paddunN
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  HL )
2 paddun.a . . . 4  |-  A  =  ( Atoms `  K )
3 paddun.p . . . 4  |-  .+  =  ( + P `  K
)
42, 3paddssat 30003 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  A )
52, 3paddunssN 29997 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  ( S  .+  T
) )
6 paddun.o . . . 4  |-  ._|_  =  ( _|_ P `  K
)
72, 6polcon3N 30106 . . 3  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A  /\  ( S  u.  T )  C_  ( S  .+  T
) )  ->  (  ._|_  `  ( S  .+  T ) )  C_  (  ._|_  `  ( S  u.  T ) ) )
81, 4, 5, 7syl3anc 1182 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  C_  (  ._|_  `  ( S  u.  T ) ) )
9 hlclat 29548 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
1093ad2ant1 976 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  CLat )
11 unss 3349 . . . . . . . . . . 11  |-  ( ( S  C_  A  /\  T  C_  A )  <->  ( S  u.  T )  C_  A
)
1211biimpi 186 . . . . . . . . . 10  |-  ( ( S  C_  A  /\  T  C_  A )  -> 
( S  u.  T
)  C_  A )
13123adant1 973 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  A )
14 eqid 2283 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1514, 2atssbase 29480 . . . . . . . . 9  |-  A  C_  ( Base `  K )
1613, 15syl6ss 3191 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  ( Base `  K
) )
17 eqid 2283 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
1814, 17clatlubcl 14217 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  ( S  u.  T )  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )
1910, 16, 18syl2anc 642 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )
20 eqid 2283 . . . . . . . 8  |-  ( pmap `  K )  =  (
pmap `  K )
2114, 20pmapssbaN 29949 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )
221, 19, 21syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )
232, 6polssatN 30097 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  S  C_  A )  -> 
(  ._|_  `  S )  C_  A )
24233adant3 975 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  S )  C_  A )
252, 6polssatN 30097 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  (  ._|_  `  S )  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  C_  A
)
261, 24, 25syl2anc 642 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  C_  A
)
272, 6polssatN 30097 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  T  C_  A )  -> 
(  ._|_  `  T )  C_  A )
28273adant2 974 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  T )  C_  A )
292, 6polssatN 30097 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  (  ._|_  `  T )  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  C_  A
)
301, 28, 29syl2anc 642 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  C_  A
)
311, 26, 303jca 1132 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( K  e.  HL  /\  (  ._|_  `  (  ._|_  `  S
) )  C_  A  /\  (  ._|_  `  (  ._|_  `  T ) ) 
C_  A ) )
322, 62polssN 30104 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A )  ->  S  C_  (  ._|_  `  (  ._|_  `  S ) ) )
33323adant3 975 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  (  ._|_  `  (  ._|_  `  S ) ) )
342, 62polssN 30104 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  T  C_  A )  ->  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )
35343adant2 974 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )
3633, 35jca 518 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  C_  (  ._|_  `  (  ._|_  `  S ) )  /\  T  C_  (  ._|_  `  (  ._|_  `  T
) ) ) )
372, 3paddss12 30008 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  (  ._|_  `  (  ._|_  `  S ) )  C_  A  /\  (  ._|_  `  (  ._|_  `  T ) ) 
C_  A )  -> 
( ( S  C_  (  ._|_  `  (  ._|_  `  S ) )  /\  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )  ->  ( S  .+  T )  C_  (
(  ._|_  `  (  ._|_  `  S ) )  .+  (  ._|_  `  (  ._|_  `  T ) ) ) ) )
3831, 36, 37sylc 56 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( (  ._|_  `  (  ._|_  `  S ) ) 
.+  (  ._|_  `  (  ._|_  `  T ) ) ) )
3917, 2, 20, 62polvalN 30103 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A )  -> 
(  ._|_  `  (  ._|_  `  S ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  S ) ) )
40393adant3 975 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  S ) ) )
4117, 2, 20, 62polvalN 30103 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  T  C_  A )  -> 
(  ._|_  `  (  ._|_  `  T ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) )
42413adant2 974 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) )
4340, 42oveq12d 5876 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  S ) )  .+  (  ._|_  `  (  ._|_  `  T ) ) )  =  ( ( (
pmap `  K ) `  ( ( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) ) )
4438, 43sseqtrd 3214 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( ( pmap `  K ) `  (
( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) ) )
45 hllat 29553 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
46453ad2ant1 976 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  Lat )
47 simp2 956 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  A )
4847, 15syl6ss 3191 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  ( Base `  K
) )
4914, 17clatlubcl 14217 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
5010, 48, 49syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
51 simp3 957 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  A )
5251, 15syl6ss 3191 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  ( Base `  K
) )
5314, 17clatlubcl 14217 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  T  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
5410, 52, 53syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
55 eqid 2283 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
5614, 55, 20, 3pmapjoin 30041 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( lub `  K
) `  S )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  T )  e.  (
Base `  K )
)  ->  ( (
( pmap `  K ) `  ( ( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) )  C_  (
( pmap `  K ) `  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) ) )
5746, 50, 54, 56syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( ( pmap `  K
) `  ( ( lub `  K ) `  S ) )  .+  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
5844, 57sstrd 3189 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( pmap `  K
) `  ( (
( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
5914, 55, 17lubun 14227 . . . . . . . . 9  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  T  C_  ( Base `  K ) )  ->  ( ( lub `  K ) `  ( S  u.  T )
)  =  ( ( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) )
6010, 48, 52, 59syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  u.  T ) )  =  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) )
6160fveq2d 5529 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) )  =  ( ( pmap `  K ) `  (
( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
6258, 61sseqtr4d 3215 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
63 eqid 2283 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
6414, 63, 17lubss 14225 . . . . . 6  |-  ( ( K  e.  CLat  /\  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
)  /\  ( S  .+  T )  C_  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  ->  ( ( lub `  K ) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K ) `
 ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  u.  T ) ) ) ) )
6510, 22, 62, 64syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) )
664, 15syl6ss 3191 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( Base `  K )
)
6714, 17clatlubcl 14217 . . . . . . 7  |-  ( ( K  e.  CLat  /\  ( S  .+  T )  C_  ( Base `  K )
)  ->  ( ( lub `  K ) `  ( S  .+  T ) )  e.  ( Base `  K ) )
6810, 66, 67syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  .+  T ) )  e.  ( Base `  K
) )
6914, 17clatlubcl 14217 . . . . . . 7  |-  ( ( K  e.  CLat  /\  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )  ->  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  e.  ( Base `  K ) )
7010, 22, 69syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  e.  ( Base `  K ) )
7114, 63, 20pmaple 29950 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  ( S  .+  T ) )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )  e.  ( Base `  K
) )  ->  (
( ( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  <->  ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) ) )
721, 68, 70, 71syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( ( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  <->  ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) ) )
7365, 72mpbid 201 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) )
7417, 2, 20, 62polvalN 30103 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A )  -> 
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  .+  T ) ) ) )
751, 4, 74syl2anc 642 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  .+  T ) ) )  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  ( S  .+  T ) ) ) )
7617, 2, 20, 62polvalN 30103 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  u.  T
)  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
771, 13, 76syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T )
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
7817, 2, 202pmaplubN 30115 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  u.  T
)  C_  A )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) ) )  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )
791, 13, 78syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
8077, 79eqtr4d 2318 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T )
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) ) ) )
8173, 75, 803sstr4d 3221 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  .+  T ) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T ) ) ) )
822, 62polcon4bN 30107 . . . 4  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A  /\  ( S  u.  T )  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  <->  (  ._|_  `  ( S  u.  T
) )  C_  (  ._|_  `  ( S  .+  T ) ) ) )
831, 4, 13, 82syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  <->  (  ._|_  `  ( S  u.  T
) )  C_  (  ._|_  `  ( S  .+  T ) ) ) )
8481, 83mpbid 201 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  u.  T ) )  C_  (  ._|_  `  ( S  .+  T ) ) )
858, 84eqssd 3196 1  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  (  ._|_  `  ( S  u.  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   lubclub 14076   joincjn 14078   Latclat 14151   CLatccla 14213   Atomscatm 29453   HLchlt 29540   pmapcpmap 29686   + Pcpadd 29984   _|_ PcpolN 30091
This theorem is referenced by:  poldmj1N  30117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-polarityN 30092
  Copyright terms: Public domain W3C validator