Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Unicode version

Theorem paddunN 30738
Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 5545.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a  |-  A  =  ( Atoms `  K )
paddun.p  |-  .+  =  ( + P `  K
)
paddun.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
paddunN  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  (  ._|_  `  ( S  u.  T ) ) )

Proof of Theorem paddunN
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  HL )
2 paddun.a . . . 4  |-  A  =  ( Atoms `  K )
3 paddun.p . . . 4  |-  .+  =  ( + P `  K
)
42, 3paddssat 30625 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  A )
52, 3paddunssN 30619 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  ( S  .+  T
) )
6 paddun.o . . . 4  |-  ._|_  =  ( _|_ P `  K
)
72, 6polcon3N 30728 . . 3  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A  /\  ( S  u.  T )  C_  ( S  .+  T
) )  ->  (  ._|_  `  ( S  .+  T ) )  C_  (  ._|_  `  ( S  u.  T ) ) )
81, 4, 5, 7syl3anc 1182 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  C_  (  ._|_  `  ( S  u.  T ) ) )
9 hlclat 30170 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
1093ad2ant1 976 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  CLat )
11 unss 3362 . . . . . . . . . . 11  |-  ( ( S  C_  A  /\  T  C_  A )  <->  ( S  u.  T )  C_  A
)
1211biimpi 186 . . . . . . . . . 10  |-  ( ( S  C_  A  /\  T  C_  A )  -> 
( S  u.  T
)  C_  A )
13123adant1 973 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  A )
14 eqid 2296 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1514, 2atssbase 30102 . . . . . . . . 9  |-  A  C_  ( Base `  K )
1613, 15syl6ss 3204 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  ( Base `  K
) )
17 eqid 2296 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
1814, 17clatlubcl 14233 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  ( S  u.  T )  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )
1910, 16, 18syl2anc 642 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )
20 eqid 2296 . . . . . . . 8  |-  ( pmap `  K )  =  (
pmap `  K )
2114, 20pmapssbaN 30571 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  ( S  u.  T ) )  e.  ( Base `  K
) )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )
221, 19, 21syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )
232, 6polssatN 30719 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  S  C_  A )  -> 
(  ._|_  `  S )  C_  A )
24233adant3 975 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  S )  C_  A )
252, 6polssatN 30719 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  (  ._|_  `  S )  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  C_  A
)
261, 24, 25syl2anc 642 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  C_  A
)
272, 6polssatN 30719 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  T  C_  A )  -> 
(  ._|_  `  T )  C_  A )
28273adant2 974 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  T )  C_  A )
292, 6polssatN 30719 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  (  ._|_  `  T )  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  C_  A
)
301, 28, 29syl2anc 642 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  C_  A
)
311, 26, 303jca 1132 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( K  e.  HL  /\  (  ._|_  `  (  ._|_  `  S
) )  C_  A  /\  (  ._|_  `  (  ._|_  `  T ) ) 
C_  A ) )
322, 62polssN 30726 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  C_  A )  ->  S  C_  (  ._|_  `  (  ._|_  `  S ) ) )
33323adant3 975 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  (  ._|_  `  (  ._|_  `  S ) ) )
342, 62polssN 30726 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  T  C_  A )  ->  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )
35343adant2 974 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )
3633, 35jca 518 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  C_  (  ._|_  `  (  ._|_  `  S ) )  /\  T  C_  (  ._|_  `  (  ._|_  `  T
) ) ) )
372, 3paddss12 30630 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  (  ._|_  `  (  ._|_  `  S ) )  C_  A  /\  (  ._|_  `  (  ._|_  `  T ) ) 
C_  A )  -> 
( ( S  C_  (  ._|_  `  (  ._|_  `  S ) )  /\  T  C_  (  ._|_  `  (  ._|_  `  T ) ) )  ->  ( S  .+  T )  C_  (
(  ._|_  `  (  ._|_  `  S ) )  .+  (  ._|_  `  (  ._|_  `  T ) ) ) ) )
3831, 36, 37sylc 56 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( (  ._|_  `  (  ._|_  `  S ) ) 
.+  (  ._|_  `  (  ._|_  `  T ) ) ) )
3917, 2, 20, 62polvalN 30725 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A )  -> 
(  ._|_  `  (  ._|_  `  S ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  S ) ) )
40393adant3 975 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  S
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  S ) ) )
4117, 2, 20, 62polvalN 30725 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  T  C_  A )  -> 
(  ._|_  `  (  ._|_  `  T ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) )
42413adant2 974 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  T
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) )
4340, 42oveq12d 5892 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  S ) )  .+  (  ._|_  `  (  ._|_  `  T ) ) )  =  ( ( (
pmap `  K ) `  ( ( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) ) )
4438, 43sseqtrd 3227 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( ( pmap `  K ) `  (
( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) ) )
45 hllat 30175 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
46453ad2ant1 976 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  Lat )
47 simp2 956 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  A )
4847, 15syl6ss 3204 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  ( Base `  K
) )
4914, 17clatlubcl 14233 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
5010, 48, 49syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
51 simp3 957 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  A )
5251, 15syl6ss 3204 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  ( Base `  K
) )
5314, 17clatlubcl 14233 . . . . . . . . . 10  |-  ( ( K  e.  CLat  /\  T  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
5410, 52, 53syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
55 eqid 2296 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
5614, 55, 20, 3pmapjoin 30663 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( lub `  K
) `  S )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  T )  e.  (
Base `  K )
)  ->  ( (
( pmap `  K ) `  ( ( lub `  K
) `  S )
)  .+  ( ( pmap `  K ) `  ( ( lub `  K
) `  T )
) )  C_  (
( pmap `  K ) `  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) ) )
5746, 50, 54, 56syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( ( pmap `  K
) `  ( ( lub `  K ) `  S ) )  .+  ( ( pmap `  K
) `  ( ( lub `  K ) `  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
5844, 57sstrd 3202 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( pmap `  K
) `  ( (
( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
5914, 55, 17lubun 14243 . . . . . . . . 9  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  T  C_  ( Base `  K ) )  ->  ( ( lub `  K ) `  ( S  u.  T )
)  =  ( ( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) )
6010, 48, 52, 59syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  u.  T ) )  =  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) )
6160fveq2d 5545 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) )  =  ( ( pmap `  K ) `  (
( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
6258, 61sseqtr4d 3228 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
63 eqid 2296 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
6414, 63, 17lubss 14241 . . . . . 6  |-  ( ( K  e.  CLat  /\  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
)  /\  ( S  .+  T )  C_  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  ->  ( ( lub `  K ) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K ) `
 ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  u.  T ) ) ) ) )
6510, 22, 62, 64syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) )
664, 15syl6ss 3204 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  .+  T )  C_  ( Base `  K )
)
6714, 17clatlubcl 14233 . . . . . . 7  |-  ( ( K  e.  CLat  /\  ( S  .+  T )  C_  ( Base `  K )
)  ->  ( ( lub `  K ) `  ( S  .+  T ) )  e.  ( Base `  K ) )
6810, 66, 67syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  .+  T ) )  e.  ( Base `  K
) )
6914, 17clatlubcl 14233 . . . . . . 7  |-  ( ( K  e.  CLat  /\  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) 
C_  ( Base `  K
) )  ->  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  e.  ( Base `  K ) )
7010, 22, 69syl2anc 642 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  e.  ( Base `  K ) )
7114, 63, 20pmaple 30572 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  ( S  .+  T ) )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )  e.  ( Base `  K
) )  ->  (
( ( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  <->  ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) ) )
721, 68, 70, 71syl3anc 1182 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( ( lub `  K
) `  ( S  .+  T ) ) ( le `  K ) ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )  <->  ( ( pmap `  K ) `  (
( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) ) )
7365, 72mpbid 201 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( S  .+  T ) ) ) 
C_  ( ( pmap `  K ) `  (
( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) ) )
7417, 2, 20, 62polvalN 30725 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A )  -> 
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  .+  T ) ) ) )
751, 4, 74syl2anc 642 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  .+  T ) ) )  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  ( S  .+  T ) ) ) )
7617, 2, 20, 62polvalN 30725 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  u.  T
)  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
771, 13, 76syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T )
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
7817, 2, 202pmaplubN 30737 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  u.  T
)  C_  A )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) ) )  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) )
791, 13, 78syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  ( ( pmap `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) )
8077, 79eqtr4d 2331 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  u.  T )
) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( ( pmap `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) ) ) )
8173, 75, 803sstr4d 3234 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  (  ._|_  `  ( S  .+  T ) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T ) ) ) )
822, 62polcon4bN 30729 . . . 4  |-  ( ( K  e.  HL  /\  ( S  .+  T ) 
C_  A  /\  ( S  u.  T )  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  <->  (  ._|_  `  ( S  u.  T
) )  C_  (  ._|_  `  ( S  .+  T ) ) ) )
831, 4, 13, 82syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
(  ._|_  `  (  ._|_  `  ( S  .+  T
) ) )  C_  (  ._|_  `  (  ._|_  `  ( S  u.  T
) ) )  <->  (  ._|_  `  ( S  u.  T
) )  C_  (  ._|_  `  ( S  .+  T ) ) ) )
8481, 83mpbid 201 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  u.  T ) )  C_  (  ._|_  `  ( S  .+  T ) ) )
858, 84eqssd 3209 1  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  (  ._|_  `  ( S  u.  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    u. cun 3163    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   lubclub 14092   joincjn 14094   Latclat 14167   CLatccla 14229   Atomscatm 30075   HLchlt 30162   pmapcpmap 30308   + Pcpadd 30606   _|_ PcpolN 30713
This theorem is referenced by:  poldmj1N  30739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-polarityN 30714
  Copyright terms: Public domain W3C validator