MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  paste Structured version   Unicode version

Theorem paste 17360
Description: Pasting lemma. If  A and  B are closed sets in  X with  A  u.  B  =  X, then any function whose restrictions to  A and  B are continuous is continuous on all of  X. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
paste.1  |-  X  = 
U. J
paste.2  |-  Y  = 
U. K
paste.4  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
paste.5  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
paste.6  |-  ( ph  ->  ( A  u.  B
)  =  X )
paste.7  |-  ( ph  ->  F : X --> Y )
paste.8  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
paste.9  |-  ( ph  ->  ( F  |`  B )  e.  ( ( Jt  B )  Cn  K ) )
Assertion
Ref Expression
paste  |-  ( ph  ->  F  e.  ( J  Cn  K ) )

Proof of Theorem paste
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 paste.7 . 2  |-  ( ph  ->  F : X --> Y )
2 paste.6 . . . . . . 7  |-  ( ph  ->  ( A  u.  B
)  =  X )
32ineq2d 3544 . . . . . 6  |-  ( ph  ->  ( ( `' F " y )  i^i  ( A  u.  B )
)  =  ( ( `' F " y )  i^i  X ) )
4 ffun 5595 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
51, 4syl 16 . . . . . . . 8  |-  ( ph  ->  Fun  F )
6 respreima 5861 . . . . . . . . 9  |-  ( Fun 
F  ->  ( `' ( F  |`  A )
" y )  =  ( ( `' F " y )  i^i  A
) )
7 respreima 5861 . . . . . . . . 9  |-  ( Fun 
F  ->  ( `' ( F  |`  B )
" y )  =  ( ( `' F " y )  i^i  B
) )
86, 7uneq12d 3504 . . . . . . . 8  |-  ( Fun 
F  ->  ( ( `' ( F  |`  A ) " y
)  u.  ( `' ( F  |`  B )
" y ) )  =  ( ( ( `' F " y )  i^i  A )  u.  ( ( `' F " y )  i^i  B
) ) )
95, 8syl 16 . . . . . . 7  |-  ( ph  ->  ( ( `' ( F  |`  A ) " y )  u.  ( `' ( F  |`  B ) " y
) )  =  ( ( ( `' F " y )  i^i  A
)  u.  ( ( `' F " y )  i^i  B ) ) )
10 indi 3589 . . . . . . 7  |-  ( ( `' F " y )  i^i  ( A  u.  B ) )  =  ( ( ( `' F " y )  i^i  A )  u.  ( ( `' F " y )  i^i  B
) )
119, 10syl6reqr 2489 . . . . . 6  |-  ( ph  ->  ( ( `' F " y )  i^i  ( A  u.  B )
)  =  ( ( `' ( F  |`  A ) " y
)  u.  ( `' ( F  |`  B )
" y ) ) )
12 imassrn 5218 . . . . . . . . 9  |-  ( `' F " y ) 
C_  ran  `' F
13 dfdm4 5065 . . . . . . . . . 10  |-  dom  F  =  ran  `' F
14 fdm 5597 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1513, 14syl5eqr 2484 . . . . . . . . 9  |-  ( F : X --> Y  ->  ran  `' F  =  X
)
1612, 15syl5sseq 3398 . . . . . . . 8  |-  ( F : X --> Y  -> 
( `' F "
y )  C_  X
)
171, 16syl 16 . . . . . . 7  |-  ( ph  ->  ( `' F "
y )  C_  X
)
18 df-ss 3336 . . . . . . 7  |-  ( ( `' F " y ) 
C_  X  <->  ( ( `' F " y )  i^i  X )  =  ( `' F "
y ) )
1917, 18sylib 190 . . . . . 6  |-  ( ph  ->  ( ( `' F " y )  i^i  X
)  =  ( `' F " y ) )
203, 11, 193eqtr3rd 2479 . . . . 5  |-  ( ph  ->  ( `' F "
y )  =  ( ( `' ( F  |`  A ) " y
)  u.  ( `' ( F  |`  B )
" y ) ) )
2120adantr 453 . . . 4  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' F " y )  =  ( ( `' ( F  |`  A ) " y )  u.  ( `' ( F  |`  B ) " y
) ) )
22 paste.4 . . . . . . 7  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
2322adantr 453 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  A  e.  ( Clsd `  J )
)
24 paste.8 . . . . . . 7  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
25 cnclima 17334 . . . . . . 7  |-  ( ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  /\  y  e.  (
Clsd `  K )
)  ->  ( `' ( F  |`  A )
" y )  e.  ( Clsd `  ( Jt  A ) ) )
2624, 25sylan 459 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' ( F  |`  A )
" y )  e.  ( Clsd `  ( Jt  A ) ) )
27 restcldr 17240 . . . . . 6  |-  ( ( A  e.  ( Clsd `  J )  /\  ( `' ( F  |`  A ) " y
)  e.  ( Clsd `  ( Jt  A ) ) )  ->  ( `' ( F  |`  A ) " y )  e.  ( Clsd `  J
) )
2823, 26, 27syl2anc 644 . . . . 5  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' ( F  |`  A )
" y )  e.  ( Clsd `  J
) )
29 paste.5 . . . . . . 7  |-  ( ph  ->  B  e.  ( Clsd `  J ) )
3029adantr 453 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  B  e.  ( Clsd `  J )
)
31 paste.9 . . . . . . 7  |-  ( ph  ->  ( F  |`  B )  e.  ( ( Jt  B )  Cn  K ) )
32 cnclima 17334 . . . . . . 7  |-  ( ( ( F  |`  B )  e.  ( ( Jt  B )  Cn  K )  /\  y  e.  (
Clsd `  K )
)  ->  ( `' ( F  |`  B )
" y )  e.  ( Clsd `  ( Jt  B ) ) )
3331, 32sylan 459 . . . . . 6  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' ( F  |`  B )
" y )  e.  ( Clsd `  ( Jt  B ) ) )
34 restcldr 17240 . . . . . 6  |-  ( ( B  e.  ( Clsd `  J )  /\  ( `' ( F  |`  B ) " y
)  e.  ( Clsd `  ( Jt  B ) ) )  ->  ( `' ( F  |`  B ) " y )  e.  ( Clsd `  J
) )
3530, 33, 34syl2anc 644 . . . . 5  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' ( F  |`  B )
" y )  e.  ( Clsd `  J
) )
36 uncld 17107 . . . . 5  |-  ( ( ( `' ( F  |`  A ) " y
)  e.  ( Clsd `  J )  /\  ( `' ( F  |`  B ) " y
)  e.  ( Clsd `  J ) )  -> 
( ( `' ( F  |`  A ) " y )  u.  ( `' ( F  |`  B ) " y
) )  e.  (
Clsd `  J )
)
3728, 35, 36syl2anc 644 . . . 4  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( ( `' ( F  |`  A ) " y
)  u.  ( `' ( F  |`  B )
" y ) )  e.  ( Clsd `  J
) )
3821, 37eqeltrd 2512 . . 3  |-  ( (
ph  /\  y  e.  ( Clsd `  K )
)  ->  ( `' F " y )  e.  ( Clsd `  J
) )
3938ralrimiva 2791 . 2  |-  ( ph  ->  A. y  e.  (
Clsd `  K )
( `' F "
y )  e.  (
Clsd `  J )
)
40 cldrcl 17092 . . . 4  |-  ( A  e.  ( Clsd `  J
)  ->  J  e.  Top )
4122, 40syl 16 . . 3  |-  ( ph  ->  J  e.  Top )
42 cntop2 17307 . . . 4  |-  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  ->  K  e.  Top )
4324, 42syl 16 . . 3  |-  ( ph  ->  K  e.  Top )
44 paste.1 . . . . 5  |-  X  = 
U. J
4544toptopon 17000 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
46 paste.2 . . . . 5  |-  Y  = 
U. K
4746toptopon 17000 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
48 iscncl 17335 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
4945, 47, 48syl2anb 467 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
5041, 43, 49syl2anc 644 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
511, 39, 50mpbir2and 890 1  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    u. cun 3320    i^i cin 3321    C_ wss 3322   U.cuni 4017   `'ccnv 4879   dom cdm 4880   ran crn 4881    |` cres 4882   "cima 4883   Fun wfun 5450   -->wf 5452   ` cfv 5456  (class class class)co 6083   ↾t crest 13650   Topctop 16960  TopOnctopon 16961   Clsdccld 17082    Cn ccn 17290
This theorem is referenced by:  cnmpt2pc  18955  cvmliftlem10  24983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-fin 7115  df-fi 7418  df-rest 13652  df-topgen 13669  df-top 16965  df-bases 16967  df-topon 16968  df-cld 17085  df-cn 17293
  Copyright terms: Public domain W3C validator