MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcaddlem Structured version   Unicode version

Theorem pcaddlem 13288
Description: Lemma for pcadd 13289. The original numbers  A and  B have been decomposed using the prime count function as  ( P ^ M )  x.  ( R  /  S ) where  R ,  S are both not divisible by  P and  M  =  ( P  pCnt  A ), and similarly for  B. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1  |-  ( ph  ->  P  e.  Prime )
pcaddlem.2  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
pcaddlem.3  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
pcaddlem.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
pcaddlem.5  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
pcaddlem.6  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
pcaddlem.7  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
pcaddlem.8  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
Assertion
Ref Expression
pcaddlem  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )

Proof of Theorem pcaddlem
StepHypRef Expression
1 oveq2 6118 . . 3  |-  ( ( A  +  B )  =  0  ->  ( P  pCnt  ( A  +  B ) )  =  ( P  pCnt  0
) )
21breq2d 4249 . 2  |-  ( ( A  +  B )  =  0  ->  ( M  <_  ( P  pCnt  ( A  +  B ) )  <->  M  <_  ( P 
pCnt  0 ) ) )
3 pcaddlem.4 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 10524 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
65zred 10406 . . . . 5  |-  ( ph  ->  M  e.  RR )
76adantr 453 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  e.  RR )
8 pcaddlem.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Prime )
9 prmnn 13113 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
108, 9syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  NN )
1110nncnd 10047 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
1210nnne0d 10075 . . . . . . . . . . . 12  |-  ( ph  ->  P  =/=  0 )
13 eluzelz 10527 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
143, 13syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
1514, 5zsubcld 10411 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
1611, 12, 15expclzd 11559 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  CC )
17 pcaddlem.7 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  e.  ZZ  /\ 
-.  P  ||  T
) )
1817simpld 447 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  ZZ )
1918zcnd 10407 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  CC )
20 pcaddlem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  e.  NN  /\ 
-.  P  ||  U
) )
2120simpld 447 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NN )
2221nncnd 10047 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CC )
2321nnne0d 10075 . . . . . . . . . . 11  |-  ( ph  ->  U  =/=  0 )
2416, 19, 22, 23divassd 9856 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  /  U
)  =  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )
2524oveq2d 6126 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
26 pcaddlem.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( R  e.  ZZ  /\ 
-.  P  ||  R
) )
2726simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  ZZ )
2827zcnd 10407 . . . . . . . . . 10  |-  ( ph  ->  R  e.  CC )
29 pcaddlem.6 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  e.  NN  /\ 
-.  P  ||  S
) )
3029simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  NN )
3130nncnd 10047 . . . . . . . . . 10  |-  ( ph  ->  S  e.  CC )
3216, 19mulcld 9139 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  CC )
3330nnne0d 10075 . . . . . . . . . 10  |-  ( ph  ->  S  =/=  0 )
3428, 31, 32, 22, 33, 23divadddivd 9865 . . . . . . . . 9  |-  ( ph  ->  ( ( R  /  S )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  /  U ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
3525, 34eqtr3d 2476 . . . . . . . 8  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) )
3635oveq2d 6126 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( P 
pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) ) ) )
3736adantr 453 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  /  ( S  x.  U ) ) ) )
388adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  P  e.  Prime )
3921nnzd 10405 . . . . . . . . . 10  |-  ( ph  ->  U  e.  ZZ )
4027, 39zmulcld 10412 . . . . . . . . 9  |-  ( ph  ->  ( R  x.  U
)  e.  ZZ )
41 uznn0sub 10548 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  M )  e.  NN0 )
423, 41syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  M
)  e.  NN0 )
4310, 42nnexpcld 11575 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  NN )
4443nnzd 10405 . . . . . . . . . . 11  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  ZZ )
4544, 18zmulcld 10412 . . . . . . . . . 10  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  T
)  e.  ZZ )
4630nnzd 10405 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ZZ )
4745, 46zmulcld 10412 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
)  e.  ZZ )
4840, 47zaddcld 10410 . . . . . . . 8  |-  ( ph  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ )
4948adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  e.  ZZ )
5011, 12, 5expclzd 11559 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ M
)  e.  CC )
5150mul01d 9296 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  0 )  =  0 )
52 oveq2 6118 . . . . . . . . . . . . 13  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  =  ( ( P ^ M )  x.  0 ) )
5352eqeq1d 2450 . . . . . . . . . . . 12  |-  ( ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) )  =  0  ->  (
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0  <->  (
( P ^ M
)  x.  0 )  =  0 ) )
5451, 53syl5ibrcom 215 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =  0  -> 
( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  0 ) )
5554necon3d 2645 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
5628, 31, 33divcld 9821 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  /  S
)  e.  CC )
5719, 22, 23divcld 9821 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  /  U
)  e.  CC )
5816, 57mulcld 9139 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  CC )
5950, 56, 58adddid 9143 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
60 pcaddlem.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )
61 pcaddlem.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )
625zcnd 10407 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  CC )
6314zcnd 10407 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  CC )
6462, 63pncan3d 9445 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  +  ( N  -  M ) )  =  N )
6564oveq2d 6126 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( P ^ N ) )
66 expaddz 11455 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( M  e.  ZZ  /\  ( N  -  M )  e.  ZZ ) )  -> 
( P ^ ( M  +  ( N  -  M ) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) ) )
6711, 12, 5, 15, 66syl22anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ ( M  +  ( N  -  M ) ) )  =  ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) ) )
6865, 67eqtr3d 2476 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P ^ N
)  =  ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) ) )
6968oveq1d 6125 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( P ^ N )  x.  ( T  /  U ) )  =  ( ( ( P ^ M )  x.  ( P ^
( N  -  M
) ) )  x.  ( T  /  U
) ) )
7050, 16, 57mulassd 9142 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( P ^ ( N  -  M )
) )  x.  ( T  /  U ) )  =  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) )
7161, 69, 703eqtrd 2478 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( ( P ^ M )  x.  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )
7260, 71oveq12d 6128 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  =  ( ( ( P ^ M
)  x.  ( R  /  S ) )  +  ( ( P ^ M )  x.  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )
7359, 72eqtr4d 2477 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) )  =  ( A  +  B ) )
7473neeq1d 2620 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( P ^ M )  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =/=  0  <->  ( A  +  B )  =/=  0 ) )
7535neeq1d 2620 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0  <->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =/=  0 ) )
7655, 74, 753imtr3d 260 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =/=  0 ) )
7730, 21nnmulcld 10078 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  x.  U
)  e.  NN )
7877nncnd 10047 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
)  e.  CC )
7977nnne0d 10075 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  x.  U
)  =/=  0 )
8078, 79div0d 9820 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  /  ( S  x.  U )
)  =  0 )
81 oveq1 6117 . . . . . . . . . . . 12  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) )  =  ( 0  / 
( S  x.  U
) ) )
8281eqeq1d 2450 . . . . . . . . . . 11  |-  ( ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) )  =  0  ->  (
( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
)  =  0  <->  (
0  /  ( S  x.  U ) )  =  0 ) )
8380, 82syl5ibrcom 215 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  =  0  ->  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =  0 ) )
8483necon3d 2645 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  / 
( S  x.  U
) )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
8576, 84syld 43 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )
8685imp 420 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) )  =/=  0 )
8777adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( S  x.  U )  e.  NN )
88 pcdiv 13257 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 )  /\  ( S  x.  U )  e.  NN )  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  /  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  ( P  pCnt  ( S  x.  U ) ) ) )
8938, 49, 86, 87, 88syl121anc 1190 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) )  /  ( S  x.  U )
) )  =  ( ( P  pCnt  (
( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) ) )
90 pcmul 13256 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( S  e.  ZZ  /\  S  =/=  0 )  /\  ( U  e.  ZZ  /\  U  =/=  0 ) )  -> 
( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
918, 46, 33, 39, 23, 90syl122anc 1194 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  ( ( P  pCnt  S )  +  ( P  pCnt  U ) ) )
9229simprd 451 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  S
)
93 pceq0 13275 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  S  e.  NN )  ->  (
( P  pCnt  S
)  =  0  <->  -.  P  ||  S ) )
948, 30, 93syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  S )  =  0  <->  -.  P  ||  S ) )
9592, 94mpbird 225 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  S
)  =  0 )
9620simprd 451 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  P  ||  U
)
97 pceq0 13275 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  U  e.  NN )  ->  (
( P  pCnt  U
)  =  0  <->  -.  P  ||  U ) )
988, 21, 97syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  U )  =  0  <->  -.  P  ||  U ) )
9996, 98mpbird 225 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  U
)  =  0 )
10095, 99oveq12d 6128 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  ( 0  +  0 ) )
101 00id 9272 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
102100, 101syl6eq 2490 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  pCnt  S )  +  ( P 
pCnt  U ) )  =  0 )
10391, 102eqtrd 2474 . . . . . . . . 9  |-  ( ph  ->  ( P  pCnt  ( S  x.  U )
)  =  0 )
104103oveq2d 6126 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  ( ( R  x.  U
)  +  ( ( ( P ^ ( N  -  M )
)  x.  T )  x.  S ) ) )  -  ( P 
pCnt  ( S  x.  U ) ) )  =  ( ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 ) )
105104adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) )  -  0 ) )
106 pczcl 13253 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  e.  ZZ  /\  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
10738, 49, 86, 106syl12anc 1183 . . . . . . . . 9  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  NN0 )
108107nn0cnd 10307 . . . . . . . 8  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^
( N  -  M
) )  x.  T
)  x.  S ) ) )  e.  CC )
109108subid1d 9431 . . . . . . 7  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  - 
0 )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
110105, 109eqtrd 2474 . . . . . 6  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) )  -  ( P  pCnt  ( S  x.  U ) ) )  =  ( P 
pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S
) ) ) )
11137, 89, 1103eqtrd 2478 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  =  ( P  pCnt  ( ( R  x.  U )  +  ( ( ( P ^ ( N  -  M ) )  x.  T )  x.  S ) ) ) )
112111, 107eqeltrd 2516 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) ) )  e.  NN0 )
113 nn0addge1 10297 . . . 4  |-  ( ( M  e.  RR  /\  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) )  e.  NN0 )  ->  M  <_  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) ) )
1147, 112, 113syl2anc 644 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
115 nnq 10618 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
11610, 115syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  QQ )
117 qexpclz 11433 . . . . . . 7  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  M  e.  ZZ )  ->  ( P ^ M )  e.  QQ )
118116, 12, 5, 117syl3anc 1185 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  e.  QQ )
119118adantr 453 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  e.  QQ )
12011, 12, 5expne0d 11560 . . . . . 6  |-  ( ph  ->  ( P ^ M
)  =/=  0 )
121120adantr 453 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P ^ M )  =/=  0
)
122 znq 10609 . . . . . . . 8  |-  ( ( R  e.  ZZ  /\  S  e.  NN )  ->  ( R  /  S
)  e.  QQ )
12327, 30, 122syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( R  /  S
)  e.  QQ )
124 qexpclz 11433 . . . . . . . . 9  |-  ( ( P  e.  QQ  /\  P  =/=  0  /\  ( N  -  M )  e.  ZZ )  ->  ( P ^ ( N  -  M ) )  e.  QQ )
125116, 12, 15, 124syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( P ^ ( N  -  M )
)  e.  QQ )
126 znq 10609 . . . . . . . . 9  |-  ( ( T  e.  ZZ  /\  U  e.  NN )  ->  ( T  /  U
)  e.  QQ )
12718, 21, 126syl2anc 644 . . . . . . . 8  |-  ( ph  ->  ( T  /  U
)  e.  QQ )
128 qmulcl 10623 . . . . . . . 8  |-  ( ( ( P ^ ( N  -  M )
)  e.  QQ  /\  ( T  /  U
)  e.  QQ )  ->  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) )  e.  QQ )
129125, 127, 128syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )
130 qaddcl 10621 . . . . . . 7  |-  ( ( ( R  /  S
)  e.  QQ  /\  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) )  e.  QQ )  -> 
( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
131123, 129, 130syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  e.  QQ )
132131adantr 453 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ )
13374, 55sylbird 228 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =/=  0  ->  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )
134133imp 420 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  =/=  0 )
135 pcqmul 13258 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( P ^ M
)  e.  QQ  /\  ( P ^ M )  =/=  0 )  /\  ( ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) )  e.  QQ  /\  ( ( R  /  S )  +  ( ( P ^ ( N  -  M )
)  x.  ( T  /  U ) ) )  =/=  0 ) )  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
13638, 119, 121, 132, 134, 135syl122anc 1194 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  ( ( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) ) )
13773oveq2d 6126 . . . . 5  |-  ( ph  ->  ( P  pCnt  (
( P ^ M
)  x.  ( ( R  /  S )  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U
) ) ) ) )  =  ( P 
pCnt  ( A  +  B ) ) )
138137adantr 453 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( ( P ^ M )  x.  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( P  pCnt  ( A  +  B ) ) )
139 pcid 13277 . . . . . . 7  |-  ( ( P  e.  Prime  /\  M  e.  ZZ )  ->  ( P  pCnt  ( P ^ M ) )  =  M )
1408, 5, 139syl2anc 644 . . . . . 6  |-  ( ph  ->  ( P  pCnt  ( P ^ M ) )  =  M )
141140oveq1d 6125 . . . . 5  |-  ( ph  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P  pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
142141adantr 453 . . . 4  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( ( P  pCnt  ( P ^ M ) )  +  ( P  pCnt  (
( R  /  S
)  +  ( ( P ^ ( N  -  M ) )  x.  ( T  /  U ) ) ) ) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
143136, 138, 1423eqtr3d 2482 . . 3  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  ( P  pCnt  ( A  +  B
) )  =  ( M  +  ( P 
pCnt  ( ( R  /  S )  +  ( ( P ^
( N  -  M
) )  x.  ( T  /  U ) ) ) ) ) )
144114, 143breqtrrd 4263 . 2  |-  ( (
ph  /\  ( A  +  B )  =/=  0
)  ->  M  <_  ( P  pCnt  ( A  +  B ) ) )
1456rexrd 9165 . . . 4  |-  ( ph  ->  M  e.  RR* )
146 pnfge 10758 . . . 4  |-  ( M  e.  RR*  ->  M  <_  +oo )
147145, 146syl 16 . . 3  |-  ( ph  ->  M  <_  +oo )
148 pc0 13259 . . . 4  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = 
+oo )
1498, 148syl 16 . . 3  |-  ( ph  ->  ( P  pCnt  0
)  =  +oo )
150147, 149breqtrrd 4263 . 2  |-  ( ph  ->  M  <_  ( P  pCnt  0 ) )
1512, 144, 150pm2.61ne 2685 1  |-  ( ph  ->  M  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727    =/= wne 2605   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   CCcc 9019   RRcr 9020   0cc0 9021    + caddc 9024    x. cmul 9026    +oocpnf 9148   RR*cxr 9150    <_ cle 9152    - cmin 9322    / cdiv 9708   NNcn 10031   NN0cn0 10252   ZZcz 10313   ZZ>=cuz 10519   QQcq 10605   ^cexp 11413    || cdivides 12883   Primecprime 13110    pCnt cpc 13241
This theorem is referenced by:  pcadd  13289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-q 10606  df-rp 10644  df-fl 11233  df-mod 11282  df-seq 11355  df-exp 11414  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-dvds 12884  df-gcd 13038  df-prm 13111  df-pc 13242
  Copyright terms: Public domain W3C validator