MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbc Unicode version

Theorem pcbc 12948
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Distinct variable groups:    P, k    k, N    k, K

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 957 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  P  e.  Prime )
2 nnnn0 9972 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
323ad2ant1 976 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  NN0 )
4 faccl 11298 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
53, 4syl 15 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  NN )
65nnzd 10116 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  ZZ )
75nnne0d 9790 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  =/=  0 )
8 fznn0sub 10824 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
983ad2ant2 977 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  NN0 )
10 faccl 11298 . . . . 5  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
119, 10syl 15 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  NN )
12 elfznn0 10822 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
13123ad2ant2 977 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  NN0 )
14 faccl 11298 . . . . 5  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
1513, 14syl 15 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  NN )
1611, 15nnmulcld 9793 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
17 pcdiv 12905 . . 3  |-  ( ( P  e.  Prime  /\  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 )  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
181, 6, 7, 16, 17syl121anc 1187 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
19 bcval2 11318 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
20193ad2ant2 977 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  _C  K
)  =  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )
2120oveq2d 5874 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
22 fzfid 11035 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 1 ... N
)  e.  Fin )
23 nnre 9753 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
24233ad2ant1 976 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  RR )
2524adantr 451 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  N  e.  RR )
26 simpl3 960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  Prime )
27 prmnn 12761 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2826, 27syl 15 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  NN )
29 elfznn 10819 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
3029nnnn0d 10018 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
3130adantl 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN0 )
3228, 31nnexpcld 11266 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( P ^
k )  e.  NN )
3325, 32nndivred 9794 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  / 
( P ^ k
) )  e.  RR )
3433flcld 10930 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
3534zcnd 10118 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  CC )
3613nn0red 10019 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  RR )
3724, 36resubcld 9211 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  RR )
3837adantr 451 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  -  K )  e.  RR )
3938, 32nndivred 9794 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( N  -  K )  / 
( P ^ k
) )  e.  RR )
4039flcld 10930 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  ZZ )
4140zcnd 10118 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  CC )
4236adantr 451 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  RR )
4342, 32nndivred 9794 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( K  / 
( P ^ k
) )  e.  RR )
4443flcld 10930 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  ZZ )
4544zcnd 10118 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  CC )
4641, 45addcld 8854 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) )  e.  CC )
4722, 35, 46fsumsub 12250 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  (
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) ) ) )
483nn0zd 10115 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ZZ )
49 uzid 10242 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
5048, 49syl 15 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  N ) )
51 pcfac 12947 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
523, 50, 1, 51syl3anc 1182 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
5313nn0ge0d 10021 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
0  <_  K )
5424, 36subge02d 9364 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 0  <_  K  <->  ( N  -  K )  <_  N ) )
5553, 54mpbid 201 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  <_  N )
5613nn0zd 10115 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  ZZ )
5748, 56zsubcld 10122 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  ZZ )
58 eluz 10241 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
5957, 48, 58syl2anc 642 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6055, 59mpbird 223 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  ( N  -  K
) ) )
61 pcfac 12947 . . . . . . 7  |-  ( ( ( N  -  K
)  e.  NN0  /\  N  e.  ( ZZ>= `  ( N  -  K
) )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  ( N  -  K
) ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
629, 60, 1, 61syl3anc 1182 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  ( N  -  K ) ) )  =  sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
63 elfzuz3 10795 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
64633ad2ant2 977 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  K ) )
65 pcfac 12947 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  K ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( K  /  ( P ^
k ) ) ) )
6613, 64, 1, 65syl3anc 1182 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  K )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) )
6762, 66oveq12d 5876 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P 
pCnt  ( ! `  K ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
6811nnzd 10116 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  ZZ )
6911nnne0d 9790 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  =/=  0 )
7015nnzd 10116 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  ZZ )
7115nnne0d 9790 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  =/=  0 )
72 pcmul 12904 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
( ! `  ( N  -  K )
)  e.  ZZ  /\  ( ! `  ( N  -  K ) )  =/=  0 )  /\  ( ( ! `  K )  e.  ZZ  /\  ( ! `  K
)  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P  pCnt  ( ! `  K ) ) ) )
731, 68, 69, 70, 71, 72syl122anc 1191 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  ( ( P  pCnt  ( ! `  ( N  -  K
) ) )  +  ( P  pCnt  ( ! `  K )
) ) )
7422, 41, 45fsumadd 12211 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
7567, 73, 743eqtr4d 2325 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )
7652, 75oveq12d 5876 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  N ) )  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) ) )
7747, 76eqtr4d 2318 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  ( ( P  pCnt  ( ! `  N )
)  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ) )
7818, 21, 773eqtr4d 2325 1  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   |_cfl 10924   ^cexp 11104   !cfa 11288    _C cbc 11315   sum_csu 12158   Primecprime 12758    pCnt cpc 12889
This theorem is referenced by:  pcbcctr  20515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890
  Copyright terms: Public domain W3C validator