MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceu Unicode version

Theorem pceu 12915
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pceu  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pceu
Dummy variables  s 
t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 732 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
2 elq 10334 . . . 4  |-  ( N  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y ) )
31, 2sylib 188 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y ) )
4 ovex 5899 . . . . . . . . 9  |-  ( S  -  T )  e. 
_V
5 biidd 228 . . . . . . . . 9  |-  ( z  =  ( S  -  T )  ->  ( N  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
64, 5ceqsexv 2836 . . . . . . . 8  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) )
7 exancom 1576 . . . . . . . 8  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
86, 7bitr3i 242 . . . . . . 7  |-  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
98rexbii 2581 . . . . . 6  |-  ( E. y  e.  NN  N  =  ( x  / 
y )  <->  E. y  e.  NN  E. z ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
10 rexcom4 2820 . . . . . 6  |-  ( E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
119, 10bitri 240 . . . . 5  |-  ( E. y  e.  NN  N  =  ( x  / 
y )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
1211rexbii 2581 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y )  <->  E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
13 rexcom4 2820 . . . 4  |-  ( E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
1412, 13bitri 240 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
153, 14sylib 188 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
16 pcval.1 . . . . . . . . . . 11  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
17 pcval.2 . . . . . . . . . . 11  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
18 eqid 2296 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
19 eqid 2296 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
20 simp11l 1066 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  P  e.  Prime )
21 simp11r 1067 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =/=  0
)
22 simp12 986 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
23 simp13l 1070 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( x  /  y ) )
24 simp2 956 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
25 simp3l 983 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( s  /  t ) )
2616, 17, 18, 19, 20, 21, 22, 23, 24, 25pceulem 12914 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
27 simp13r 1071 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  ( S  -  T ) )
28 simp3r 984 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
2926, 27, 283eqtr4d 2338 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  w )
30293exp 1150 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( ( s  e.  ZZ  /\  t  e.  NN )  ->  (
( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) )
3130rexlimdvv 2686 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) )
32313exp 1150 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  =/=  0 )  ->  (
( x  e.  ZZ  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  -> 
( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
3332adantrl 696 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( x  e.  ZZ  /\  y  e.  NN )  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
3433rexlimdvv 2686 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )  -> 
z  =  w ) ) )
3534imp3a 420 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
3635alrimivv 1622 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
37 eqeq1 2302 . . . . . 6  |-  ( z  =  w  ->  (
z  =  ( S  -  T )  <->  w  =  ( S  -  T
) ) )
3837anbi2d 684 . . . . 5  |-  ( z  =  w  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
39382rexbidv 2599 . . . 4  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
40 oveq1 5881 . . . . . . . . 9  |-  ( x  =  s  ->  (
x  /  y )  =  ( s  / 
y ) )
4140eqeq2d 2307 . . . . . . . 8  |-  ( x  =  s  ->  ( N  =  ( x  /  y )  <->  N  =  ( s  /  y
) ) )
42 breq2 4043 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  s ) )
4342rabbidv 2793 . . . . . . . . . . . 12  |-  ( x  =  s  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
)
4443supeq1d 7215 . . . . . . . . . . 11  |-  ( x  =  s  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
4516, 44syl5eq 2340 . . . . . . . . . 10  |-  ( x  =  s  ->  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
4645oveq1d 5889 . . . . . . . . 9  |-  ( x  =  s  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )
4746eqeq2d 2307 . . . . . . . 8  |-  ( x  =  s  ->  (
w  =  ( S  -  T )  <->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) )
4841, 47anbi12d 691 . . . . . . 7  |-  ( x  =  s  ->  (
( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  ( N  =  ( s  /  y
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
4948rexbidv 2577 . . . . . 6  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. y  e.  NN  ( N  =  (
s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
50 oveq2 5882 . . . . . . . . 9  |-  ( y  =  t  ->  (
s  /  y )  =  ( s  / 
t ) )
5150eqeq2d 2307 . . . . . . . 8  |-  ( y  =  t  ->  ( N  =  ( s  /  y )  <->  N  =  ( s  /  t
) ) )
52 breq2 4043 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  t ) )
5352rabbidv 2793 . . . . . . . . . . . 12  |-  ( y  =  t  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
)
5453supeq1d 7215 . . . . . . . . . . 11  |-  ( y  =  t  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
5517, 54syl5eq 2340 . . . . . . . . . 10  |-  ( y  =  t  ->  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
5655oveq2d 5890 . . . . . . . . 9  |-  ( y  =  t  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )
5756eqeq2d 2307 . . . . . . . 8  |-  ( y  =  t  ->  (
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  <-> 
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
5851, 57anbi12d 691 . . . . . . 7  |-  ( y  =  t  ->  (
( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) )  <->  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
5958cbvrexv 2778 . . . . . 6  |-  ( E. y  e.  NN  ( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )  <->  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
6049, 59syl6bb 252 . . . . 5  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. t  e.  NN  ( N  =  (
s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
6160cbvrexv 2778 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
6239, 61syl6bb 252 . . 3  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
6362eu4 2195 . 2  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  ( E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  /\  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) ) )
6415, 36, 63sylanbrc 645 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   E!weu 2156    =/= wne 2459   E.wrex 2557   {crab 2560   class class class wbr 4039  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753    < clt 8883    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   QQcq 10332   ^cexp 11120    || cdivides 12547   Primecprime 12774
This theorem is referenced by:  pczpre  12916  pcdiv  12921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775
  Copyright terms: Public domain W3C validator