MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfac Structured version   Unicode version

Theorem pcfac 13260
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcfac  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
Distinct variable groups:    P, k    k, N    k, M

Proof of Theorem pcfac
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . . . . . 8  |-  ( x  =  0  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  0 )
)
2 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
32oveq2d 6089 . . . . . . . . 9  |-  ( x  =  0  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  0 )
) )
4 oveq1 6080 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  /  ( P ^ k ) )  =  ( 0  / 
( P ^ k
) ) )
54fveq2d 5724 . . . . . . . . . 10  |-  ( x  =  0  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
0  /  ( P ^ k ) ) ) )
65sumeq2sdv 12490 . . . . . . . . 9  |-  ( x  =  0  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) )
73, 6eqeq12d 2449 . . . . . . . 8  |-  ( x  =  0  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  0 ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) ) )
81, 7raleqbidv 2908 . . . . . . 7  |-  ( x  =  0  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  0 ) ( P  pCnt  ( ! `  0 ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
0  /  ( P ^ k ) ) ) ) )
98imbi2d 308 . . . . . 6  |-  ( x  =  0  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  0 )
( P  pCnt  ( ! `  0 )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) ) ) )
10 fveq2 5720 . . . . . . . 8  |-  ( x  =  n  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  n )
)
11 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
1211oveq2d 6089 . . . . . . . . 9  |-  ( x  =  n  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  n )
) )
13 oveq1 6080 . . . . . . . . . . 11  |-  ( x  =  n  ->  (
x  /  ( P ^ k ) )  =  ( n  / 
( P ^ k
) ) )
1413fveq2d 5724 . . . . . . . . . 10  |-  ( x  =  n  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
n  /  ( P ^ k ) ) ) )
1514sumeq2sdv 12490 . . . . . . . . 9  |-  ( x  =  n  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) )
1612, 15eqeq12d 2449 . . . . . . . 8  |-  ( x  =  n  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  n ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
1710, 16raleqbidv 2908 . . . . . . 7  |-  ( x  =  n  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  n ) ( P  pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) ) )
1817imbi2d 308 . . . . . 6  |-  ( x  =  n  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) ) )
19 fveq2 5720 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  ( n  +  1 ) ) )
20 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
2120oveq2d 6089 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  ( n  +  1 ) ) ) )
22 oveq1 6080 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
x  /  ( P ^ k ) )  =  ( ( n  +  1 )  / 
( P ^ k
) ) )
2322fveq2d 5724 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) )
2423sumeq2sdv 12490 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) )
2521, 24eqeq12d 2449 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
2619, 25raleqbidv 2908 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  ( n  + 
1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) ) )
2726imbi2d 308 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
28 fveq2 5720 . . . . . . . 8  |-  ( x  =  N  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  N )
)
29 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
3029oveq2d 6089 . . . . . . . . 9  |-  ( x  =  N  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  N )
) )
31 oveq1 6080 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
x  /  ( P ^ k ) )  =  ( N  / 
( P ^ k
) ) )
3231fveq2d 5724 . . . . . . . . . 10  |-  ( x  =  N  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  ( N  /  ( P ^
k ) ) ) )
3332sumeq2sdv 12490 . . . . . . . . 9  |-  ( x  =  N  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
3430, 33eqeq12d 2449 . . . . . . . 8  |-  ( x  =  N  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
3528, 34raleqbidv 2908 . . . . . . 7  |-  ( x  =  N  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  N ) ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) ) ) )
3635imbi2d 308 . . . . . 6  |-  ( x  =  N  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  N )
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) ) )
37 fzfid 11304 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( 1 ... m )  e. 
Fin )
38 sumz 12508 . . . . . . . . . 10  |-  ( ( ( 1 ... m
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... m )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
3938olcs 385 . . . . . . . . 9  |-  ( ( 1 ... m )  e.  Fin  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
4037, 39syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
41 0nn0 10228 . . . . . . . . . . 11  |-  0  e.  NN0
4241a1i 11 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  0  e.  NN0 )
43 elfznn 11072 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... m )  ->  k  e.  NN )
4443nnnn0d 10266 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... m )  ->  k  e.  NN0 )
45 nn0uz 10512 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
4644, 45syl6eleq 2525 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... m )  ->  k  e.  ( ZZ>= `  0 )
)
4746adantl 453 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  k  e.  (
ZZ>= `  0 ) )
48 simpll 731 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  P  e.  Prime )
49 pcfaclem 13259 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  k  e.  ( ZZ>= ` 
0 )  /\  P  e.  Prime )  ->  ( |_ `  ( 0  / 
( P ^ k
) ) )  =  0 )
5042, 47, 48, 49syl3anc 1184 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  ( |_ `  ( 0  /  ( P ^ k ) ) )  =  0 )
5150sumeq2dv 12489 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) 0 )
52 fac0 11561 . . . . . . . . . . 11  |-  ( ! `
 0 )  =  1
5352oveq2i 6084 . . . . . . . . . 10  |-  ( P 
pCnt  ( ! ` 
0 ) )  =  ( P  pCnt  1
)
54 pc1 13221 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
5553, 54syl5eq 2479 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
pCnt  ( ! ` 
0 ) )  =  0 )
5655adantr 452 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( P  pCnt  ( ! `  0
) )  =  0 )
5740, 51, 563eqtr4rd 2478 . . . . . . 7  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( P  pCnt  ( ! `  0
) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  ( 0  /  ( P ^
k ) ) ) )
5857ralrimiva 2781 . . . . . 6  |-  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  0 )
( P  pCnt  ( ! `  0 )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) )
59 nn0z 10296 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
6059adantr 452 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  ->  n  e.  ZZ )
61 uzid 10492 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
62 peano2uz 10522 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( n  +  1 )  e.  ( ZZ>= `  n )
)
6360, 61, 623syl 19 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( n  +  1 )  e.  ( ZZ>= `  n ) )
64 uzss 10498 . . . . . . . . . 10  |-  ( ( n  +  1 )  e.  ( ZZ>= `  n
)  ->  ( ZZ>= `  ( n  +  1
) )  C_  ( ZZ>=
`  n ) )
65 ssralv 3399 . . . . . . . . . 10  |-  ( (
ZZ>= `  ( n  + 
1 ) )  C_  ( ZZ>= `  n )  ->  ( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
6663, 64, 653syl 19 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
67 oveq1 6080 . . . . . . . . . . 11  |-  ( ( P  pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  (
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) ) )
68 simpll 731 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  n  e.  NN0 )
69 facp1 11563 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
7068, 69syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ! `  ( n  +  1
) )  =  ( ( ! `  n
)  x.  ( n  +  1 ) ) )
7170oveq2d 6089 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  ( P 
pCnt  ( ( ! `
 n )  x.  ( n  +  1 ) ) ) )
72 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  Prime )
73 faccl 11568 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ! `
 n )  e.  NN )
74 nnz 10295 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  e.  ZZ )
75 nnne0 10024 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  =/=  0 )
7674, 75jca 519 . . . . . . . . . . . . . . 15  |-  ( ( ! `  n )  e.  NN  ->  (
( ! `  n
)  e.  ZZ  /\  ( ! `  n )  =/=  0 ) )
7768, 73, 763syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( ! `
 n )  e.  ZZ  /\  ( ! `
 n )  =/=  0 ) )
78 nn0p1nn 10251 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
79 nnz 10295 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  ZZ )
80 nnne0 10024 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  =/=  0 )
8179, 80jca 519 . . . . . . . . . . . . . . 15  |-  ( ( n  +  1 )  e.  NN  ->  (
( n  +  1 )  e.  ZZ  /\  ( n  +  1
)  =/=  0 ) )
8268, 78, 813syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  e.  ZZ  /\  ( n  +  1 )  =/=  0 ) )
83 pcmul 13217 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( ! `  n
)  e.  ZZ  /\  ( ! `  n )  =/=  0 )  /\  ( ( n  + 
1 )  e.  ZZ  /\  ( n  +  1 )  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  n )  x.  (
n  +  1 ) ) )  =  ( ( P  pCnt  ( ! `  n )
)  +  ( P 
pCnt  ( n  + 
1 ) ) ) )
8472, 77, 82, 83syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( ( ! `  n
)  x.  ( n  +  1 ) ) )  =  ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) ) )
8571, 84eqtr2d 2468 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  ( P  pCnt  ( ! `  ( n  +  1 ) ) ) )
8668adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  NN0 )
8786nn0zd 10365 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  ZZ )
88 prmnn 13074 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  NN )
8988ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  NN )
90 nnexpcl 11386 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
9189, 44, 90syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( P ^ k )  e.  NN )
92 fldivp1 13258 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( ( P ^ k ) 
||  ( n  + 
1 ) ,  1 ,  0 ) )
9387, 91, 92syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( ( P ^ k ) 
||  ( n  + 
1 ) ,  1 ,  0 ) )
94 elfzuz 11047 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... m )  ->  k  e.  ( ZZ>= `  1 )
)
9568, 78syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  NN )
9672, 95pccld 13216 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  NN0 )
9796nn0zd 10365 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  ZZ )
98 elfz5 11043 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( P  pCnt  ( n  + 
1 ) )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) )  <->  k  <_  ( P  pCnt  ( n  +  1 ) ) ) )
9994, 97, 98syl2anr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) )  <->  k  <_  ( P  pCnt  ( n  +  1 ) ) ) )
100 simpllr 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  P  e.  Prime )
10186, 78syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  NN )
102101nnzd 10366 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  ZZ )
10344adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  k  e.  NN0 )
104 pcdvdsb 13234 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  (
n  +  1 )  e.  ZZ  /\  k  e.  NN0 )  ->  (
k  <_  ( P  pCnt  ( n  +  1 ) )  <->  ( P ^ k )  ||  ( n  +  1
) ) )
105100, 102, 103, 104syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
k  <_  ( P  pCnt  ( n  +  1 ) )  <->  ( P ^ k )  ||  ( n  +  1
) ) )
10699, 105bitr2d 246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( P ^ k
)  ||  ( n  +  1 )  <->  k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
107106ifbid 3749 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  if ( ( P ^
k )  ||  (
n  +  1 ) ,  1 ,  0 )  =  if ( k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) ) ,  1 ,  0 ) )
10893, 107eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( k  e.  ( 1 ... ( P  pCnt  (
n  +  1 ) ) ) ,  1 ,  0 ) )
109108sumeq2dv 12489 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 ) )
110 fzfid 11304 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( 1 ... m )  e.  Fin )
11168nn0red 10267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  n  e.  RR )
112 peano2re 9231 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
113111, 112syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  RR )
114113adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  RR )
115114, 91nndivred 10040 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( n  +  1 )  /  ( P ^ k ) )  e.  RR )
116115flcld 11199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( ( n  +  1 )  / 
( P ^ k
) ) )  e.  ZZ )
117116zcnd 10368 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( ( n  +  1 )  / 
( P ^ k
) ) )  e.  CC )
118111adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  RR )
119118, 91nndivred 10040 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  /  ( P ^ k ) )  e.  RR )
120119flcld 11199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( n  / 
( P ^ k
) ) )  e.  ZZ )
121120zcnd 10368 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( n  / 
( P ^ k
) ) )  e.  CC )
122110, 117, 121fsumsub 12563 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
123 fzfi 11303 . . . . . . . . . . . . . . . 16  |-  ( 1 ... m )  e. 
Fin
12496nn0red 10267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  RR )
125 eluzelz 10488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( ZZ>= `  (
n  +  1 ) )  ->  m  e.  ZZ )
126125adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  ZZ )
127126zred 10367 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  RR )
128 prmuz2 13089 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
129128ad2antlr 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  (
ZZ>= `  2 ) )
13095nnnn0d 10266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  NN0 )
131 bernneq3 11499 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
n  +  1 )  e.  NN0 )  -> 
( n  +  1 )  <  ( P ^ ( n  + 
1 ) ) )
132129, 130, 131syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  <  ( P ^ ( n  + 
1 ) ) )
133124, 113letrid 9215 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  \/  ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) ) ) )
134133ord 367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( -.  ( P  pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  ->  ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) ) ) )
13595nnzd 10366 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  ZZ )
136 pcdvdsb 13234 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Prime  /\  (
n  +  1 )  e.  ZZ  /\  (
n  +  1 )  e.  NN0 )  -> 
( ( n  + 
1 )  <_  ( P  pCnt  ( n  + 
1 ) )  <->  ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
) ) )
13772, 135, 130, 136syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) )  <->  ( P ^
( n  +  1 ) )  ||  (
n  +  1 ) ) )
13889, 130nnexpcld 11536 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  NN )
139138nnzd 10366 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  ZZ )
140 dvdsle 12887 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P ^ (
n  +  1 ) )  e.  ZZ  /\  ( n  +  1
)  e.  NN )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 ) ) )
141139, 95, 140syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 ) ) )
142138nnred 10007 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  RR )
143142, 113lenltd 9211 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 )  <->  -.  ( n  +  1 )  < 
( P ^ (
n  +  1 ) ) ) )
144141, 143sylibd 206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
145137, 144sylbid 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) )  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
146134, 145syld 42 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( -.  ( P  pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
147132, 146mt4d 132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  <_  ( n  +  1 ) )
148 eluzle 10490 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  (
n  +  1 ) )  ->  ( n  +  1 )  <_  m )
149148adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  <_  m
)
150124, 113, 127, 147, 149letrd 9219 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  <_  m )
151 eluz 10491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  pCnt  (
n  +  1 ) )  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  ( P  pCnt  ( n  +  1 ) ) )  <->  ( P  pCnt  ( n  +  1 ) )  <_  m
) )
15297, 126, 151syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( m  e.  ( ZZ>= `  ( P  pCnt  ( n  +  1 ) ) )  <->  ( P  pCnt  ( n  +  1 ) )  <_  m
) )
153150, 152mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  (
ZZ>= `  ( P  pCnt  ( n  +  1 ) ) ) )
154 fzss2 11084 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( ZZ>= `  ( P  pCnt  ( n  + 
1 ) ) )  ->  ( 1 ... ( P  pCnt  (
n  +  1 ) ) )  C_  (
1 ... m ) )
155153, 154syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( 1 ... ( P  pCnt  (
n  +  1 ) ) )  C_  (
1 ... m ) )
156 sumhash 13257 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... m
)  e.  Fin  /\  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) 
C_  ( 1 ... m ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P 
pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
157123, 155, 156sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
158 hashfz1 11622 . . . . . . . . . . . . . . . 16  |-  ( ( P  pCnt  ( n  +  1 ) )  e.  NN0  ->  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) )  =  ( P 
pCnt  ( n  + 
1 ) ) )
15996, 158syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( # `  (
1 ... ( P  pCnt  ( n  +  1 ) ) ) )  =  ( P  pCnt  (
n  +  1 ) ) )
160157, 159eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( P 
pCnt  ( n  + 
1 ) ) )
161109, 122, 1603eqtr3d 2475 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) )  =  ( P  pCnt  ( n  +  1 ) ) )
162110, 117fsumcl 12519 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  e.  CC )
163110, 121fsumcl 12519 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  e.  CC )
164124recnd 9106 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  CC )
165162, 163, 164subaddd 9421 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( sum_ k  e.  ( 1 ... m ) ( |_ `  ( ( n  +  1 )  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) )  =  ( P  pCnt  ( n  +  1 ) )  <-> 
( sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) ) )
166161, 165mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) )
16785, 166eqeq12d 2449 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  (
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  <-> 
( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
16867, 167syl5ib 211 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  ( P  pCnt  ( ! `  (
n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  ( ( n  +  1 )  /  ( P ^
k ) ) ) ) )
169168ralimdva 2776 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
17066, 169syld 42 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
171170ex 424 . . . . . . 7  |-  ( n  e.  NN0  ->  ( P  e.  Prime  ->  ( A. m  e.  ( ZZ>= `  n ) ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
172171a2d 24 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  n ) ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) )  ->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
1739, 18, 27, 36, 58, 172nn0ind 10358 . . . . 5  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  N )
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
174173imp 419 . . . 4  |-  ( ( N  e.  NN0  /\  P  e.  Prime )  ->  A. m  e.  ( ZZ>=
`  N ) ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
175 oveq2 6081 . . . . . . 7  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
176175sumeq1d 12487 . . . . . 6  |-  ( m  =  M  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
177176eqeq2d 2446 . . . . 5  |-  ( m  =  M  ->  (
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
178177rspcv 3040 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( A. m  e.  ( ZZ>= `  N ) ( P 
pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) )  ->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
179174, 178syl5 30 . . 3  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( N  e.  NN0  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) ) )
1801793impib 1151 . 2  |-  ( ( M  e.  ( ZZ>= `  N )  /\  N  e.  NN0  /\  P  e. 
Prime )  ->  ( P 
pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
1811803com12 1157 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    C_ wss 3312   ifcif 3731   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Fincfn 7101   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   |_cfl 11193   ^cexp 11374   !cfa 11558   #chash 11610   sum_csu 12471    || cdivides 12844   Primecprime 13071    pCnt cpc 13202
This theorem is referenced by:  pcbc  13261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203
  Copyright terms: Public domain W3C validator