Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcl0bN Unicode version

Theorem pcl0bN 30088
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pcl0b.a  |-  A  =  ( Atoms `  K )
pcl0b.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pcl0bN  |-  ( ( K  e.  HL  /\  P  C_  A )  -> 
( ( U `  P )  =  (/)  <->  P  =  (/) ) )

Proof of Theorem pcl0bN
StepHypRef Expression
1 pcl0b.a . . . . 5  |-  A  =  ( Atoms `  K )
2 pcl0b.c . . . . 5  |-  U  =  ( PCl `  K
)
31, 2pclssidN 30060 . . . 4  |-  ( ( K  e.  HL  /\  P  C_  A )  ->  P  C_  ( U `  P ) )
4 eqimss 3336 . . . 4  |-  ( ( U `  P )  =  (/)  ->  ( U `
 P )  C_  (/) )
53, 4sylan9ss 3297 . . 3  |-  ( ( ( K  e.  HL  /\  P  C_  A )  /\  ( U `  P
)  =  (/) )  ->  P  C_  (/) )
6 ss0 3594 . . 3  |-  ( P 
C_  (/)  ->  P  =  (/) )
75, 6syl 16 . 2  |-  ( ( ( K  e.  HL  /\  P  C_  A )  /\  ( U `  P
)  =  (/) )  ->  P  =  (/) )
8 fveq2 5661 . . . 4  |-  ( P  =  (/)  ->  ( U `
 P )  =  ( U `  (/) ) )
92pcl0N 30087 . . . 4  |-  ( K  e.  HL  ->  ( U `  (/) )  =  (/) )
108, 9sylan9eqr 2434 . . 3  |-  ( ( K  e.  HL  /\  P  =  (/) )  -> 
( U `  P
)  =  (/) )
1110adantlr 696 . 2  |-  ( ( ( K  e.  HL  /\  P  C_  A )  /\  P  =  (/) )  -> 
( U `  P
)  =  (/) )
127, 11impbida 806 1  |-  ( ( K  e.  HL  /\  P  C_  A )  -> 
( ( U `  P )  =  (/)  <->  P  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    C_ wss 3256   (/)c0 3564   ` cfv 5387   Atomscatm 29429   HLchlt 29516   PClcpclN 30052
This theorem is referenced by:  pclfinclN  30115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-psubsp 29668  df-pmap 29669  df-pclN 30053  df-polarityN 30068
  Copyright terms: Public domain W3C validator