MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem6 Structured version   Unicode version

Theorem pclem6 898
Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Nov-2012.)
Assertion
Ref Expression
pclem6  |-  ( (
ph 
<->  ( ps  /\  -.  ph ) )  ->  -.  ps )

Proof of Theorem pclem6
StepHypRef Expression
1 ibar 492 . . 3  |-  ( ps 
->  ( -.  ph  <->  ( ps  /\ 
-.  ph ) ) )
2 nbbn 349 . . 3  |-  ( ( -.  ph  <->  ( ps  /\  -.  ph ) )  <->  -.  ( ph 
<->  ( ps  /\  -.  ph ) ) )
31, 2sylib 190 . 2  |-  ( ps 
->  -.  ( ph  <->  ( ps  /\ 
-.  ph ) ) )
43con2i 115 1  |-  ( (
ph 
<->  ( ps  /\  -.  ph ) )  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360
This theorem is referenced by:  nalset  4342  pwnss  4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator