Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclidN Unicode version

Theorem pclidN 29458
Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s  |-  S  =  ( PSubSp `  K )
pclid.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclidN  |-  ( ( K  e.  V  /\  X  e.  S )  ->  ( U `  X
)  =  X )

Proof of Theorem pclidN
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
2 pclid.s . . . 4  |-  S  =  ( PSubSp `  K )
31, 2psubssat 29316 . . 3  |-  ( ( K  e.  V  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
4 pclid.c . . . 4  |-  U  =  ( PCl `  K
)
51, 2, 4pclvalN 29452 . . 3  |-  ( ( K  e.  V  /\  X  C_  ( Atoms `  K
) )  ->  ( U `  X )  =  |^| { y  e.  S  |  X  C_  y } )
63, 5syldan 456 . 2  |-  ( ( K  e.  V  /\  X  e.  S )  ->  ( U `  X
)  =  |^| { y  e.  S  |  X  C_  y } )
7 intmin 3882 . . 3  |-  ( X  e.  S  ->  |^| { y  e.  S  |  X  C_  y }  =  X )
87adantl 452 . 2  |-  ( ( K  e.  V  /\  X  e.  S )  ->  |^| { y  e.  S  |  X  C_  y }  =  X
)
96, 8eqtrd 2315 1  |-  ( ( K  e.  V  /\  X  e.  S )  ->  ( U `  X
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   |^|cint 3862   ` cfv 5255   Atomscatm 28826   PSubSpcpsubsp 29058   PClcpclN 29449
This theorem is referenced by:  pclbtwnN  29459  pclunN  29460  pclun2N  29461  pclfinN  29462  pclss2polN  29483  pclfinclN  29512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-psubsp 29065  df-pclN 29450
  Copyright terms: Public domain W3C validator