MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco1 Unicode version

Theorem pco1 18529
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
pco1  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  1
)  =  ( G `
 1 ) )

Proof of Theorem pco1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 pcoval.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
31, 2pcoval 18525 . . 3  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
43fveq1d 5543 . 2  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  1
)  =  ( ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) `  1
) )
5 1elunit 10771 . . 3  |-  1  e.  ( 0 [,] 1
)
6 halflt1 9949 . . . . . . . 8  |-  ( 1  /  2 )  <  1
7 1re 8853 . . . . . . . . . 10  |-  1  e.  RR
8 rehalfcl 9954 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
97, 8ax-mp 8 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
109, 7ltnlei 8955 . . . . . . . 8  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
116, 10mpbi 199 . . . . . . 7  |-  -.  1  <_  ( 1  /  2
)
12 breq1 4042 . . . . . . 7  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
1311, 12mtbiri 294 . . . . . 6  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
14 iffalse 3585 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  x )  - 
1 ) ) )
1513, 14syl 15 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) )  =  ( G `  ( ( 2  x.  x )  -  1 ) ) )
16 oveq2 5882 . . . . . . . . 9  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
17 2cn 9832 . . . . . . . . . 10  |-  2  e.  CC
1817mulid1i 8855 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
1916, 18syl6eq 2344 . . . . . . . 8  |-  ( x  =  1  ->  (
2  x.  x )  =  2 )
2019oveq1d 5889 . . . . . . 7  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  ( 2  -  1 ) )
21 ax-1cn 8811 . . . . . . . 8  |-  1  e.  CC
22 1p1e2 9856 . . . . . . . 8  |-  ( 1  +  1 )  =  2
2317, 21, 21, 22subaddrii 9151 . . . . . . 7  |-  ( 2  -  1 )  =  1
2420, 23syl6eq 2344 . . . . . 6  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  1 )
2524fveq2d 5545 . . . . 5  |-  ( x  =  1  ->  ( G `  ( (
2  x.  x )  -  1 ) )  =  ( G ` 
1 ) )
2615, 25eqtrd 2328 . . . 4  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) )  =  ( G ` 
1 ) )
27 eqid 2296 . . . 4  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )
28 fvex 5555 . . . 4  |-  ( G `
 1 )  e. 
_V
2926, 27, 28fvmpt 5618 . . 3  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) ) ` 
1 )  =  ( G `  1 ) )
305, 29ax-mp 8 . 2  |-  ( ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) `  1
)  =  ( G `
 1 )
314, 30syl6eq 2344 1  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  1
)  =  ( G `
 1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1632    e. wcel 1696   ifcif 3578   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   2c2 9811   [,]cicc 10675    Cn ccn 16970   IIcii 18395   *pcpco 18514
This theorem is referenced by:  pcohtpylem  18533  pcorevlem  18540  pcophtb  18543  om1addcl  18547  pi1xfrf  18567  pi1xfr  18569  pi1xfrcnvlem  18570  pi1coghm  18575  conpcon  23781  sconpht2  23784  cvmlift3lem6  23870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-icc 10679  df-top 16652  df-topon 16655  df-cn 16973  df-pco 18519
  Copyright terms: Public domain W3C validator