MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoass Unicode version

Theorem pcoass 18538
Description: Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcoass.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoass.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
pcoass.4  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
pcoass.5  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
pcoass.6  |-  ( ph  ->  ( G `  1
)  =  ( H `
 0 ) )
pcoass.7  |-  P  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) )
Assertion
Ref Expression
pcoass  |-  ( ph  ->  ( ( F ( *p `  J ) G ) ( *p
`  J ) H ) (  ~=ph  `  J
) ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) )
Distinct variable groups:    x, F    x, G    x, H    x, J    ph, x
Allowed substitution hint:    P( x)

Proof of Theorem pcoass
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3584 . . . . . . . . . . 11  |-  ( x  <_  ( 1  / 
4 )  ->  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) )  =  ( 2  x.  x ) )
21fveq2d 5545 . . . . . . . . . 10  |-  ( x  <_  ( 1  / 
4 )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 ( 2  x.  x ) ) )
32adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 ( 2  x.  x ) ) )
4 2cn 9832 . . . . . . . . . . . . 13  |-  2  e.  CC
5 0re 8854 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
6 1re 8853 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
75, 6elicc2i 10732 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0 [,] 1 )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  1
) )
87simp1bi 970 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,] 1 )  ->  x  e.  RR )
98adantr 451 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  ->  x  e.  RR )
109recnd 8877 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  ->  x  e.  CC )
11 mulcom 8839 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  =  ( x  x.  2 ) )
124, 10, 11sylancr 644 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  -> 
( 2  x.  x
)  =  ( x  x.  2 ) )
137simp2bi 971 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,] 1 )  ->  0  <_  x )
1413adantr 451 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  -> 
0  <_  x )
15 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  ->  x  <_  ( 1  / 
4 ) )
16 4nn 9895 . . . . . . . . . . . . . . . 16  |-  4  e.  NN
17 nnrecre 9798 . . . . . . . . . . . . . . . 16  |-  ( 4  e.  NN  ->  (
1  /  4 )  e.  RR )
1816, 17ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( 1  /  4 )  e.  RR
195, 18elicc2i 10732 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 [,] ( 1  /  4
) )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  (
1  /  4 ) ) )
209, 14, 15, 19syl3anbrc 1136 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  ->  x  e.  ( 0 [,] ( 1  / 
4 ) ) )
21 2rp 10375 . . . . . . . . . . . . . 14  |-  2  e.  RR+
224mul02i 9017 . . . . . . . . . . . . . 14  |-  ( 0  x.  2 )  =  0
2318recni 8865 . . . . . . . . . . . . . . 15  |-  ( 1  /  4 )  e.  CC
24232timesi 9861 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
4 ) )  =  ( ( 1  / 
4 )  +  ( 1  /  4 ) )
25 2ne0 9845 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
26 recdiv2 9489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 1  / 
2 )  /  2
)  =  ( 1  /  ( 2  x.  2 ) ) )
274, 25, 4, 25, 26mp4an 654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  /  2 )  /  2 )  =  ( 1  /  (
2  x.  2 ) )
28 2t2e4 9887 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  2 )  =  4
2928oveq2i 5885 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  ( 2  x.  2 ) )  =  ( 1  /  4
)
3027, 29eqtri 2316 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  /  2 )  =  ( 1  /  4
)
3130, 30oveq12i 5886 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  2
)  /  2 )  +  ( ( 1  /  2 )  / 
2 ) )  =  ( ( 1  / 
4 )  +  ( 1  /  4 ) )
32 rehalfcl 9954 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
336, 32ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  2 )  e.  RR
3433recni 8865 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  2 )  e.  CC
35 2halves 9956 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  e.  CC  ->  (
( ( 1  / 
2 )  /  2
)  +  ( ( 1  /  2 )  /  2 ) )  =  ( 1  / 
2 ) )
3634, 35ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  2
)  /  2 )  +  ( ( 1  /  2 )  / 
2 ) )  =  ( 1  /  2
)
3731, 36eqtr3i 2318 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  /  2
)
3824, 37eqtri 2316 . . . . . . . . . . . . . . 15  |-  ( 2  x.  ( 1  / 
4 ) )  =  ( 1  /  2
)
394, 23, 38mulcomli 8860 . . . . . . . . . . . . . 14  |-  ( ( 1  /  4 )  x.  2 )  =  ( 1  /  2
)
405, 18, 21, 22, 39iccdili 10790 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 [,] ( 1  /  4
) )  ->  (
x  x.  2 )  e.  ( 0 [,] ( 1  /  2
) ) )
4120, 40syl 15 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  -> 
( x  x.  2 )  e.  ( 0 [,] ( 1  / 
2 ) ) )
4212, 41eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
4 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] ( 1  / 
2 ) ) )
43 pcoass.2 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
44 pcoass.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
45 pcoass.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
46 pcoass.6 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( G `  1
)  =  ( H `
 0 ) )
4744, 45, 46pcocn 18531 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G ( *p
`  J ) H )  e.  ( II 
Cn  J ) )
4843, 47pcoval1 18527 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2  x.  x )  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( 2  x.  x ) )  =  ( F `  ( 2  x.  (
2  x.  x ) ) ) )
4943, 44pcoval1 18527 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2  x.  x )  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) G ) `  ( 2  x.  x ) )  =  ( F `  ( 2  x.  (
2  x.  x ) ) ) )
5048, 49eqtr4d 2331 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2  x.  x )  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( 2  x.  x ) )  =  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) )
5142, 50sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  4 ) ) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( 2  x.  x ) )  =  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) )
5251anassrs 629 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( 2  x.  x ) )  =  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) )
533, 52eqtrd 2328 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) G ) `
 ( 2  x.  x ) ) )
5453adantlr 695 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  x  <_ 
( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) G ) `
 ( 2  x.  x ) ) )
55 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  ph )
568ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  x  e.  RR )
5756adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  x  e.  RR )
58 letric 8937 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  ( 1  /  4
)  e.  RR )  ->  ( x  <_ 
( 1  /  4
)  \/  ( 1  /  4 )  <_  x ) )
5956, 18, 58sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
x  <_  ( 1  /  4 )  \/  ( 1  /  4
)  <_  x )
)
6059orcanai 879 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
1  /  4 )  <_  x )
61 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  x  <_  ( 1  /  2
) )
6218, 33elicc2i 10732 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  <->  ( x  e.  RR  /\  ( 1  /  4 )  <_  x  /\  x  <_  (
1  /  2 ) ) )
6357, 60, 61, 62syl3anbrc 1136 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  x  e.  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )
6462simp1bi 970 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  x  e.  RR )
65 readdcl 8836 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( 1  /  4
)  e.  RR )  ->  ( x  +  ( 1  /  4
) )  e.  RR )
6664, 18, 65sylancl 643 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  +  ( 1  /  4 ) )  e.  RR )
6718a1i 10 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
1  /  4 )  e.  RR )
6862simp2bi 971 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
1  /  4 )  <_  x )
6967, 64, 67, 68leadd1dd 9402 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
( 1  /  4
)  +  ( 1  /  4 ) )  <_  ( x  +  ( 1  /  4
) ) )
7037, 69syl5eqbrr 4073 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
1  /  2 )  <_  ( x  +  ( 1  /  4
) ) )
7133a1i 10 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
1  /  2 )  e.  RR )
7262simp3bi 972 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  x  <_  ( 1  /  2
) )
73 2lt4 9906 . . . . . . . . . . . . . . . . 17  |-  2  <  4
74 2re 9831 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
75 4re 9835 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
76 2pos 9844 . . . . . . . . . . . . . . . . . 18  |-  0  <  2
77 4pos 9848 . . . . . . . . . . . . . . . . . 18  |-  0  <  4
7874, 75, 76, 77ltrecii 9689 . . . . . . . . . . . . . . . . 17  |-  ( 2  <  4  <->  ( 1  /  4 )  < 
( 1  /  2
) )
7973, 78mpbi 199 . . . . . . . . . . . . . . . 16  |-  ( 1  /  4 )  < 
( 1  /  2
)
8018, 33, 79ltleii 8957 . . . . . . . . . . . . . . 15  |-  ( 1  /  4 )  <_ 
( 1  /  2
)
8180a1i 10 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
1  /  4 )  <_  ( 1  / 
2 ) )
8264, 67, 71, 71, 72, 81le2addd 9406 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  +  ( 1  /  4 ) )  <_  ( ( 1  /  2 )  +  ( 1  /  2
) ) )
83 ax-1cn 8811 . . . . . . . . . . . . . 14  |-  1  e.  CC
84 2halves 9956 . . . . . . . . . . . . . 14  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
8583, 84ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
8682, 85syl6breq 4078 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  +  ( 1  /  4 ) )  <_  1 )
8733, 6elicc2i 10732 . . . . . . . . . . . 12  |-  ( ( x  +  ( 1  /  4 ) )  e.  ( ( 1  /  2 ) [,] 1 )  <->  ( (
x  +  ( 1  /  4 ) )  e.  RR  /\  (
1  /  2 )  <_  ( x  +  ( 1  /  4
) )  /\  (
x  +  ( 1  /  4 ) )  <_  1 ) )
8866, 70, 86, 87syl3anbrc 1136 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  +  ( 1  /  4 ) )  e.  ( ( 1  /  2 ) [,] 1 ) )
8963, 88syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
x  +  ( 1  /  4 ) )  e.  ( ( 1  /  2 ) [,] 1 ) )
90 pcoass.5 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
9144, 45pco0 18528 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( G ( *p `  J ) H ) `  0
)  =  ( G `
 0 ) )
9290, 91eqtr4d 2331 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  1
)  =  ( ( G ( *p `  J ) H ) `
 0 ) )
9343, 47, 92pcoval2 18530 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  +  ( 1  / 
4 ) )  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( x  +  ( 1  / 
4 ) ) )  =  ( ( G ( *p `  J
) H ) `  ( ( 2  x.  ( x  +  ( 1  /  4 ) ) )  -  1 ) ) )
9455, 89, 93syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( x  +  ( 1  / 
4 ) ) )  =  ( ( G ( *p `  J
) H ) `  ( ( 2  x.  ( x  +  ( 1  /  4 ) ) )  -  1 ) ) )
9585oveq2i 5885 . . . . . . . . . . . 12  |-  ( ( 2  x.  ( x  +  ( 1  / 
4 ) ) )  -  ( ( 1  /  2 )  +  ( 1  /  2
) ) )  =  ( ( 2  x.  ( x  +  ( 1  /  4 ) ) )  -  1 )
964a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  2  e.  CC )
9757recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  x  e.  CC )
9823a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
1  /  4 )  e.  CC )
9996, 97, 98adddid 8875 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  ( x  +  ( 1  / 
4 ) ) )  =  ( ( 2  x.  x )  +  ( 2  x.  (
1  /  4 ) ) ) )
10038oveq2i 5885 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  x )  +  ( 2  x.  ( 1  /  4
) ) )  =  ( ( 2  x.  x )  +  ( 1  /  2 ) )
10199, 100syl6eq 2344 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  ( x  +  ( 1  / 
4 ) ) )  =  ( ( 2  x.  x )  +  ( 1  /  2
) ) )
102101oveq1d 5889 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( 2  x.  (
x  +  ( 1  /  4 ) ) )  -  ( ( 1  /  2 )  +  ( 1  / 
2 ) ) )  =  ( ( ( 2  x.  x )  +  ( 1  / 
2 ) )  -  ( ( 1  / 
2 )  +  ( 1  /  2 ) ) ) )
10395, 102syl5eqr 2342 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( 2  x.  (
x  +  ( 1  /  4 ) ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 1  / 
2 ) )  -  ( ( 1  / 
2 )  +  ( 1  /  2 ) ) ) )
104 remulcl 8838 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  x  e.  RR )  ->  ( 2  x.  x
)  e.  RR )
10574, 57, 104sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  x )  e.  RR )
106105recnd 8877 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  x )  e.  CC )
10734a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
1  /  2 )  e.  CC )
108106, 107, 107pnpcan2d 9211 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( ( 2  x.  x )  +  ( 1  /  2 ) )  -  ( ( 1  /  2 )  +  ( 1  / 
2 ) ) )  =  ( ( 2  x.  x )  -  ( 1  /  2
) ) )
109103, 108eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( 2  x.  (
x  +  ( 1  /  4 ) ) )  -  1 )  =  ( ( 2  x.  x )  -  ( 1  /  2
) ) )
110109fveq2d 5545 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  ( x  +  ( 1  / 
4 ) ) )  -  1 ) )  =  ( ( G ( *p `  J
) H ) `  ( ( 2  x.  x )  -  (
1  /  2 ) ) ) )
1114, 97, 11sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  x )  =  ( x  x.  2 ) )
11283, 4, 25divcan1i 9520 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 )  x.  2 )  =  1
11318, 33, 21, 39, 112iccdili 10790 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  x.  2 )  e.  ( ( 1  /  2 ) [,] 1 ) )
11463, 113syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
x  x.  2 )  e.  ( ( 1  /  2 ) [,] 1 ) )
115111, 114eqeltrd 2370 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  x )  e.  ( ( 1  /  2 ) [,] 1 ) )
11634subidi 9133 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 )  -  ( 1  / 
2 ) )  =  0
11783, 34, 34, 85subaddrii 9151 . . . . . . . . . . . . 13  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
11833, 6, 33, 116, 117iccshftli 10788 . . . . . . . . . . . 12  |-  ( ( 2  x.  x )  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  ( 1  /  2 ) )  e.  ( 0 [,] ( 1  /  2
) ) )
119115, 118syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( 2  x.  x
)  -  ( 1  /  2 ) )  e.  ( 0 [,] ( 1  /  2
) ) )
12044, 45pcoval1 18527 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
2  x.  x )  -  ( 1  / 
2 ) )  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  x )  -  ( 1  / 
2 ) ) )  =  ( G `  ( 2  x.  (
( 2  x.  x
)  -  ( 1  /  2 ) ) ) ) )
12155, 119, 120syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  x )  -  ( 1  / 
2 ) ) )  =  ( G `  ( 2  x.  (
( 2  x.  x
)  -  ( 1  /  2 ) ) ) ) )
12296, 106, 107subdid 9251 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  ( ( 2  x.  x )  -  ( 1  / 
2 ) ) )  =  ( ( 2  x.  ( 2  x.  x ) )  -  ( 2  x.  (
1  /  2 ) ) ) )
1234, 25recidi 9507 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
124123oveq2i 5885 . . . . . . . . . . . 12  |-  ( ( 2  x.  ( 2  x.  x ) )  -  ( 2  x.  ( 1  /  2
) ) )  =  ( ( 2  x.  ( 2  x.  x
) )  -  1 )
125122, 124syl6eq 2344 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
2  x.  ( ( 2  x.  x )  -  ( 1  / 
2 ) ) )  =  ( ( 2  x.  ( 2  x.  x ) )  - 
1 ) )
126125fveq2d 5545 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  ( G `  ( 2  x.  ( ( 2  x.  x )  -  (
1  /  2 ) ) ) )  =  ( G `  (
( 2  x.  (
2  x.  x ) )  -  1 ) ) )
127121, 126eqtrd 2328 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  x )  -  ( 1  / 
2 ) ) )  =  ( G `  ( ( 2  x.  ( 2  x.  x
) )  -  1 ) ) )
12894, 110, 1273eqtrd 2332 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( x  +  ( 1  / 
4 ) ) )  =  ( G `  ( ( 2  x.  ( 2  x.  x
) )  -  1 ) ) )
129 iffalse 3585 . . . . . . . . . 10  |-  ( -.  x  <_  ( 1  /  4 )  ->  if ( x  <_  (
1  /  4 ) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) )  =  ( x  +  ( 1  / 
4 ) ) )
130129fveq2d 5545 . . . . . . . . 9  |-  ( -.  x  <_  ( 1  /  4 )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 ( x  +  ( 1  /  4
) ) ) )
131130adantl 452 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 ( x  +  ( 1  /  4
) ) ) )
13243, 44, 90pcoval2 18530 . . . . . . . . 9  |-  ( (
ph  /\  ( 2  x.  x )  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  ( 2  x.  x ) )  =  ( G `  ( ( 2  x.  ( 2  x.  x
) )  -  1 ) ) )
13355, 115, 132syl2anc 642 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) G ) `  ( 2  x.  x ) )  =  ( G `  ( ( 2  x.  ( 2  x.  x
) )  -  1 ) ) )
134128, 131, 1333eqtr4d 2338 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( 0 [,] 1 ) )  /\  x  <_  (
1  /  2 ) )  /\  -.  x  <_  ( 1  /  4
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) G ) `
 ( 2  x.  x ) ) )
13554, 134pm2.61dan 766 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )  =  ( ( F ( *p `  J ) G ) `
 ( 2  x.  x ) ) )
136 iftrue 3584 . . . . . . . 8  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )
137136fveq2d 5545 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( ( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ) )
138137adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( ( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ) )
139 iftrue 3584 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( F ( *p `  J ) G ) `  (
2  x.  x ) ) ,  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )  =  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) )
140139adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( F ( *p `  J ) G ) `  (
2  x.  x ) ) ,  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )  =  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) )
141135, 138, 1403eqtr4d 2338 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  x  <_  ( 1  /  2
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  if ( x  <_  (
1  /  2 ) ,  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) ,  ( H `  ( ( 2  x.  x )  -  1 ) ) ) )
142 elii2 18450 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
143 halfgt0 9948 . . . . . . . . . . . . . . 15  |-  0  <  ( 1  /  2
)
1445, 33, 143ltleii 8957 . . . . . . . . . . . . . 14  |-  0  <_  ( 1  /  2
)
145 halflt1 9949 . . . . . . . . . . . . . . 15  |-  ( 1  /  2 )  <  1
14633, 6, 145ltleii 8957 . . . . . . . . . . . . . 14  |-  ( 1  /  2 )  <_ 
1
1475, 6elicc2i 10732 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
14833, 144, 146, 147mpbir3an 1134 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
149 1elunit 10771 . . . . . . . . . . . . 13  |-  1  e.  ( 0 [,] 1
)
150 iccss2 10736 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( 1  /  2 ) [,] 1 )  C_  (
0 [,] 1 ) )
151148, 149, 150mp2an 653 . . . . . . . . . . . 12  |-  ( ( 1  /  2 ) [,] 1 )  C_  ( 0 [,] 1
)
152151sseli 3189 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  x  e.  ( 0 [,] 1
) )
1534, 25div0i 9510 . . . . . . . . . . . 12  |-  ( 0  /  2 )  =  0
154 eqid 2296 . . . . . . . . . . . 12  |-  ( 1  /  2 )  =  ( 1  /  2
)
1555, 6, 21, 153, 154icccntri 10792 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] 1 )  ->  (
x  /  2 )  e.  ( 0 [,] ( 1  /  2
) ) )
15634addid2i 9016 . . . . . . . . . . . 12  |-  ( 0  +  ( 1  / 
2 ) )  =  ( 1  /  2
)
1575, 33, 33, 156, 85iccshftri 10786 . . . . . . . . . . 11  |-  ( ( x  /  2 )  e.  ( 0 [,] ( 1  /  2
) )  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  e.  ( ( 1  /  2 ) [,] 1 ) )
158152, 155, 1573syl 18 . . . . . . . . . 10  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  e.  ( ( 1  /  2 ) [,] 1 ) )
15943, 47, 92pcoval2 18530 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  /  2 )  +  ( 1  / 
2 ) )  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  =  ( ( G ( *p `  J
) H ) `  ( ( 2  x.  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  -  1 ) ) )
160158, 159sylan2 460 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  =  ( ( G ( *p `  J
) H ) `  ( ( 2  x.  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  -  1 ) ) )
16133, 6elicc2i 10732 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  <->  ( x  e.  RR  /\  ( 1  /  2 )  <_  x  /\  x  <_  1
) )
162161simp1bi 970 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  x  e.  RR )
163162recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  x  e.  CC )
16483a1i 10 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  1  e.  CC )
1654a1i 10 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  2  e.  CC )
16625a1i 10 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  2  =/=  0 )
167163, 164, 165, 166divdird 9590 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( x  +  1 )  /  2 )  =  ( ( x  /  2 )  +  ( 1  /  2
) ) )
168167oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
2  x.  ( ( x  +  1 )  /  2 ) )  =  ( 2  x.  ( ( x  / 
2 )  +  ( 1  /  2 ) ) ) )
169 peano2cn 9000 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
x  +  1 )  e.  CC )
170163, 169syl 15 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
x  +  1 )  e.  CC )
171170, 165, 166divcan2d 9554 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
2  x.  ( ( x  +  1 )  /  2 ) )  =  ( x  + 
1 ) )
172168, 171eqtr3d 2330 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
2  x.  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  =  ( x  + 
1 ) )
173172oveq1d 5889 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  (
( x  /  2
)  +  ( 1  /  2 ) ) )  -  1 )  =  ( ( x  +  1 )  - 
1 ) )
174 pncan 9073 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  1  e.  CC )  ->  ( ( x  + 
1 )  -  1 )  =  x )
175163, 83, 174sylancl 643 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( x  +  1 )  -  1 )  =  x )
176173, 175eqtrd 2328 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  (
( x  /  2
)  +  ( 1  /  2 ) ) )  -  1 )  =  x )
177176fveq2d 5545 . . . . . . . . . 10  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  -  1 ) )  =  ( ( G ( *p `  J
) H ) `  x ) )
178177adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( G ( *p
`  J ) H ) `  ( ( 2  x.  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  -  1 ) )  =  ( ( G ( *p `  J
) H ) `  x ) )
17944, 45, 46pcoval2 18530 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( G ( *p
`  J ) H ) `  x )  =  ( H `  ( ( 2  x.  x )  -  1 ) ) )
180160, 178, 1793eqtrd 2332 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )  =  ( H `  ( ( 2  x.  x )  -  1 ) ) )
181142, 180sylan2 460 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  -.  x  <_  ( 1  /  2
) ) )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  (
( x  /  2
)  +  ( 1  /  2 ) ) )  =  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )
182181anassrs 629 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  (
( x  /  2
)  +  ( 1  /  2 ) ) )  =  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )
183 iffalse 3585 . . . . . . . 8  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  if ( x  <_  ( 1  / 
4 ) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4
) ) ) ,  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  =  ( ( x  /  2
)  +  ( 1  /  2 ) ) )
184183fveq2d 5545 . . . . . . 7  |-  ( -.  x  <_  ( 1  /  2 )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( ( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( ( x  /  2 )  +  ( 1  / 
2 ) ) ) )
185184adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( ( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  ( ( x  /  2 )  +  ( 1  / 
2 ) ) ) )
186 iffalse 3585 . . . . . . 7  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) ,  ( H `  ( ( 2  x.  x )  -  1 ) ) )  =  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )
187186adantl 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) ,  ( H `  ( ( 2  x.  x )  -  1 ) ) )  =  ( H `
 ( ( 2  x.  x )  - 
1 ) ) )
188182, 185, 1873eqtr4d 2338 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  if ( x  <_  (
1  /  2 ) ,  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) ,  ( H `  ( ( 2  x.  x )  -  1 ) ) ) )
189141, 188pm2.61dan 766 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) ( G ( *p `  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  if ( x  <_  (
1  /  2 ) ,  ( ( F ( *p `  J
) G ) `  ( 2  x.  x
) ) ,  ( H `  ( ( 2  x.  x )  -  1 ) ) ) )
190189mpteq2dva 4122 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( F ( *p `  J ) G ) `
 ( 2  x.  x ) ) ,  ( H `  (
( 2  x.  x
)  -  1 ) ) ) ) )
191 pcoass.7 . . . . . . 7  |-  P  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) )
192 iitopon 18399 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
193192a1i 10 . . . . . . . 8  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
194193cnmptid 17371 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
195 0elunit 10770 . . . . . . . . . 10  |-  0  e.  ( 0 [,] 1
)
196195a1i 10 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
197193, 193, 196cnmptc 17372 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
198 eqid 2296 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
199 eqid 2296 . . . . . . . . 9  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
200 eqid 2296 . . . . . . . . 9  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
201 dfii2 18402 . . . . . . . . 9  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
2025a1i 10 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
2036a1i 10 . . . . . . . . 9  |-  ( ph  ->  1  e.  RR )
204148a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
205 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
206205oveq1d 5889 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  +  ( 1  /  4 ) )  =  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) )
20734, 23addcomi 9019 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( ( 1  / 
4 )  +  ( 1  /  2 ) )
208206, 207syl6eq 2344 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  +  ( 1  /  4 ) )  =  ( ( 1  /  4 )  +  ( 1  / 
2 ) ) )
20918, 33ltnlei 8955 . . . . . . . . . . . . 13  |-  ( ( 1  /  4 )  <  ( 1  / 
2 )  <->  -.  (
1  /  2 )  <_  ( 1  / 
4 ) )
21079, 209mpbi 199 . . . . . . . . . . . 12  |-  -.  (
1  /  2 )  <_  ( 1  / 
4 )
211205breq1d 4049 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  <_  (
1  /  4 )  <-> 
( 1  /  2
)  <_  ( 1  /  4 ) ) )
212210, 211mtbiri 294 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  ->  -.  y  <_  ( 1  /  4 ) )
213 iffalse 3585 . . . . . . . . . . 11  |-  ( -.  y  <_  ( 1  /  4 )  ->  if ( y  <_  (
1  /  4 ) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) )  =  ( y  +  ( 1  / 
4 ) ) )
214212, 213syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  ->  if ( y  <_  (
1  /  4 ) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) )  =  ( y  +  ( 1  / 
4 ) ) )
215205oveq1d 5889 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  /  2
)  =  ( ( 1  /  2 )  /  2 ) )
216215, 30syl6eq 2344 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  /  2
)  =  ( 1  /  4 ) )
217216oveq1d 5889 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( y  / 
2 )  +  ( 1  /  2 ) )  =  ( ( 1  /  4 )  +  ( 1  / 
2 ) ) )
218208, 214, 2173eqtr4d 2338 . . . . . . . . 9  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  ->  if ( y  <_  (
1  /  4 ) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) )  =  ( ( y  /  2 )  +  ( 1  / 
2 ) ) )
219 eqid 2296 . . . . . . . . . 10  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) )
220 eqid 2296 . . . . . . . . . 10  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  4
) [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  4
) [,] ( 1  /  2 ) ) )
22133a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
22275, 77recgt0ii 9678 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  4
)
2235, 18, 222ltleii 8957 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  4
)
2245, 33elicc2i 10732 . . . . . . . . . . . 12  |-  ( ( 1  /  4 )  e.  ( 0 [,] ( 1  /  2
) )  <->  ( (
1  /  4 )  e.  RR  /\  0  <_  ( 1  /  4
)  /\  ( 1  /  4 )  <_ 
( 1  /  2
) ) )
22518, 223, 80, 224mpbir3an 1134 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  ( 0 [,] (
1  /  2 ) )
226225a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  4
)  e.  ( 0 [,] ( 1  / 
2 ) ) )
227 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  =  ( 1  / 
4 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  4 ) )
228227oveq2d 5890 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  =  ( 1  / 
4 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
4 ) ) )
229227oveq1d 5889 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  =  ( 1  / 
4 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( y  +  ( 1  /  4 ) )  =  ( ( 1  /  4 )  +  ( 1  / 
4 ) ) )
23024, 228, 2293eqtr4a 2354 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  =  ( 1  / 
4 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( y  +  ( 1  / 
4 ) ) )
231 retopon 18288 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
232 0xr 8894 . . . . . . . . . . . . . . . 16  |-  0  e.  RR*
233 ressxr 8892 . . . . . . . . . . . . . . . . 17  |-  RR  C_  RR*
234233, 33sselii 3190 . . . . . . . . . . . . . . . 16  |-  ( 1  /  2 )  e. 
RR*
235 lbicc2 10768 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  (
1  /  2 )  e.  RR*  /\  0  <_  ( 1  /  2
) )  ->  0  e.  ( 0 [,] (
1  /  2 ) ) )
236232, 234, 144, 235mp3an 1277 . . . . . . . . . . . . . . 15  |-  0  e.  ( 0 [,] (
1  /  2 ) )
237 iccss2 10736 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ( 0 [,] ( 1  / 
2 ) )  /\  ( 1  /  4
)  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( 0 [,] ( 1  /  4
) )  C_  (
0 [,] ( 1  /  2 ) ) )
238236, 225, 237mp2an 653 . . . . . . . . . . . . . 14  |-  ( 0 [,] ( 1  / 
4 ) )  C_  ( 0 [,] (
1  /  2 ) )
239 iccssre 10747 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
2405, 33, 239mp2an 653 . . . . . . . . . . . . . 14  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
241238, 240sstri 3201 . . . . . . . . . . . . 13  |-  ( 0 [,] ( 1  / 
4 ) )  C_  RR
242 resttopon 16908 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  4 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  4 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  4 ) ) ) )
243231, 241, 242mp2an 653 . . . . . . . . . . . 12  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  4 ) ) )
244243a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  4 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  4 ) ) ) )
245244, 193cnmpt1st 17378 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  4 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  4
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) ) ) )
246 retop 18286 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  e.  Top
247 ovex 5899 . . . . . . . . . . . . . 14  |-  ( 0 [,] ( 1  / 
2 ) )  e. 
_V
248 restabs 16912 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( 0 [,] ( 1  / 
4 ) )  C_  ( 0 [,] (
1  /  2 ) )  /\  ( 0 [,] ( 1  / 
2 ) )  e. 
_V )  ->  (
( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )t  ( 0 [,] ( 1  /  4
) ) )  =  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  4 ) ) ) )
249246, 238, 247, 248mp3an 1277 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )t  ( 0 [,] (
1  /  4 ) ) )  =  ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) )
250249eqcomi 2300 . . . . . . . . . . . 12  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  4 ) ) )  =  ( ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )t  ( 0 [,] (
1  /  4 ) ) )
251 resttopon 16908 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
252231, 240, 251mp2an 653 . . . . . . . . . . . . 13  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
253252a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
254238a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0 [,] (
1  /  4 ) )  C_  ( 0 [,] ( 1  / 
2 ) ) )
255199iihalf1cn 18446 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
256255a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  x
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
257250, 253, 254, 256cnmpt1res 17386 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  4 ) ) 
|->  ( 2  x.  x
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  4 ) ) )  Cn  II ) )
258 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
259244, 193, 245, 244, 257, 258cnmpt21 17381 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  4 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  4
) ) )  tX  II )  Cn  II ) )
260 iccssre 10747 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  4
)  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( ( 1  /  4 ) [,] ( 1  /  2
) )  C_  RR )
26118, 33, 260mp2an 653 . . . . . . . . . . . . 13  |-  ( ( 1  /  4 ) [,] ( 1  / 
2 ) )  C_  RR
262 resttopon 16908 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
4 ) [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )  e.  (TopOn `  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) ) )
263231, 261, 262mp2an 653 . . . . . . . . . . . 12  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  4
) [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )
264263a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )  e.  (TopOn `  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) ) )
265264, 193cnmpt1st 17378 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( ( 1  /  4
) [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  4 ) [,] ( 1  /  2
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  4
) [,] ( 1  /  2 ) ) ) ) )
266 eqid 2296 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
267261a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  / 
4 ) [,] (
1  /  2 ) )  C_  RR )
268 iccssre 10747 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
2695, 6, 268mp2an 653 . . . . . . . . . . . . 13  |-  ( 0 [,] 1 )  C_  RR
270269a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0 [,] 1
)  C_  RR )
271151, 88sseldi 3191 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( 1  /  4 ) [,] ( 1  /  2
) )  ->  (
x  +  ( 1  /  4 ) )  e.  ( 0 [,] 1 ) )
272271adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )  ->  (
x  +  ( 1  /  4 ) )  e.  ( 0 [,] 1 ) )
273266cnfldtopon 18308 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
274273a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
275274cnmptid 17371 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  CC  |->  x )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
27618a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
277276recnd 8877 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  /  4
)  e.  CC )
278274, 274, 277cnmptc 17372 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  CC  |->  ( 1  /  4
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
279266addcn 18385 . . . . . . . . . . . . . 14  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
280279a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
281274, 275, 278, 280cnmpt12f 17376 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( x  +  (
1  /  4 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
282266, 220, 201, 267, 270, 272, 281cnmptre 18441 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( ( 1  /  4
) [,] ( 1  /  2 ) ) 
|->  ( x  +  ( 1  /  4 ) ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
4 ) [,] (
1  /  2 ) ) )  Cn  II ) )
283 oveq1 5881 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  +  ( 1  /  4 ) )  =  ( y  +  ( 1  /  4
) ) )
284264, 193, 265, 264, 282, 283cnmpt21 17381 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( ( 1  /  4
) [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( y  +  ( 1  /  4 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  4 ) [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
285198, 219, 220, 199, 202, 221, 226, 193, 230, 259, 284cnmpt2pc 18442 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  4
) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) ) )  e.  ( ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  tX  II )  Cn  II ) )
286 iccssre 10747 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
28733, 6, 286mp2an 653 . . . . . . . . . . . 12  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
288 resttopon 16908 . . . . . . . . . . . 12  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
289231, 287, 288mp2an 653 . . . . . . . . . . 11  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
290289a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
291290, 193cnmpt1st 17378 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
292287a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
293151, 158sseldi 3191 . . . . . . . . . . . 12  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  e.  ( 0 [,] 1 ) )
294293adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  e.  ( 0 [,] 1 ) )
295266divccn 18393 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( x  e.  CC  |->  ( x  /  2
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
2964, 25, 295mp2an 653 . . . . . . . . . . . . 13  |-  ( x  e.  CC  |->  ( x  /  2 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
297296a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( x  /  2
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
29834a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
299274, 274, 298cnmptc 17372 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  CC  |->  ( 1  /  2
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
300274, 297, 299, 280cnmpt12f 17376 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  CC  |->  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
301266, 200, 201, 292, 270, 294, 300cnmptre 18441 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
302 oveq1 5881 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  /  2 )  =  ( y  / 
2 ) )
303302oveq1d 5889 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  =  ( ( y  /  2 )  +  ( 1  /  2
) ) )
304290, 193, 291, 290, 301, 303cnmpt21 17381 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( ( y  / 
2 )  +  ( 1  /  2 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
305198, 199, 200, 201, 202, 203, 204, 193, 218, 285, 304cnmpt2pc 18442 . . . . . . . 8  |-  ( ph  ->  ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  if ( y  <_  ( 1  /  4 ) ,  ( 2  x.  y
) ,  ( y  +  ( 1  / 
4 ) ) ) ,  ( ( y  /  2 )  +  ( 1  /  2
) ) ) )  e.  ( ( II 
tX  II )  Cn  II ) )
306 breq1 4042 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  <_  ( 1  /  2 )  <->  y  <_  ( 1  /  2 ) ) )
307 breq1 4042 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  <_  ( 1  /  4 )  <->  y  <_  ( 1  /  4 ) ) )
308307, 258, 283ifbieq12d 3600 . . . . . . . . . . . 12  |-  ( x  =  y  ->  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) )  =  if ( y  <_  ( 1  / 
4 ) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4
) ) ) )
309306, 308, 303ifbieq12d 3600 . . . . . . . . . . 11  |-  ( x  =  y  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  if ( y  <_  ( 1  /  2 ) ,  if ( y  <_ 
( 1  /  4
) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) ) ,  ( ( y  /  2
)  +  ( 1  /  2 ) ) ) )
310309equcoms 1666 . . . . . . . . . 10  |-  ( y  =  x  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  if ( y  <_  ( 1  /  2 ) ,  if ( y  <_ 
( 1  /  4
) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) ) ,  ( ( y  /  2
)  +  ( 1  /  2 ) ) ) )
311310adantr 451 . . . . . . . . 9  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( x  <_  ( 1  / 
2 ) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) )  =  if ( y  <_ 
( 1  /  2
) ,  if ( y  <_  ( 1  /  4 ) ,  ( 2  x.  y
) ,  ( y  +  ( 1  / 
4 ) ) ) ,  ( ( y  /  2 )  +  ( 1  /  2
) ) ) )
312311eqcomd 2301 . . . . . . . 8  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  if ( y  <_  (
1  /  4 ) ,  ( 2  x.  y ) ,  ( y  +  ( 1  /  4 ) ) ) ,  ( ( y  /  2 )  +  ( 1  / 
2 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) )
313193, 194, 197, 193, 193, 305, 312cnmpt12 17377 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) )  e.  ( II  Cn  II ) )
314191, 313syl5eqel 2380 . . . . . 6  |-  ( ph  ->  P  e.  ( II 
Cn  II ) )
315 iiuni 18401 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
316315, 315cnf 16992 . . . . . 6  |-  ( P  e.  ( II  Cn  II )  ->  P :
( 0 [,] 1
) --> ( 0 [,] 1 ) )
317314, 316syl 15 . . . . 5  |-  ( ph  ->  P : ( 0 [,] 1 ) --> ( 0 [,] 1 ) )
318191fmpt 5697 . . . . 5  |-  ( A. x  e.  ( 0 [,] 1 ) if ( x  <_  (
1  /  2 ) ,  if ( x  <_  ( 1  / 
4 ) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4
) ) ) ,  ( ( x  / 
2 )  +  ( 1  /  2 ) ) )  e.  ( 0 [,] 1 )  <-> 
P : ( 0 [,] 1 ) --> ( 0 [,] 1 ) )
319317, 318sylibr 203 . . . 4  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) if ( x  <_ 
( 1  /  2
) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) )  e.  ( 0 [,] 1
) )
320191a1i 10 . . . 4  |-  ( ph  ->  P  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) ) )
32143, 47, 92pcocn 18531 . . . . . 6  |-  ( ph  ->  ( F ( *p
`  J ) ( G ( *p `  J ) H ) )  e.  ( II 
Cn  J ) )
322 eqid 2296 . . . . . . 7  |-  U. J  =  U. J
323315, 322cnf 16992 . . . . . 6  |-  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) )  e.  ( II  Cn  J )  ->  ( F ( *p `  J ) ( G ( *p `  J
) H ) ) : ( 0 [,] 1 ) --> U. J
)
324321, 323syl 15 . . . . 5  |-  ( ph  ->  ( F ( *p
`  J ) ( G ( *p `  J ) H ) ) : ( 0 [,] 1 ) --> U. J )
325324feqmptd 5591 . . . 4  |-  ( ph  ->  ( F ( *p
`  J ) ( G ( *p `  J ) H ) )  =  ( y  e.  ( 0 [,] 1 )  |->  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 y ) ) )
326 fveq2 5541 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) )  -> 
( ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) `  y
)  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 if ( x  <_  ( 1  / 
2 ) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) ) )
327319, 320, 325, 326fmptcof 5708 . . 3  |-  ( ph  ->  ( ( F ( *p `  J ) ( G ( *p
`  J ) H ) )  o.  P
)  =  ( x  e.  ( 0 [,] 1 )  |->  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) ) `
 if ( x  <_  ( 1  / 
2 ) ,  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) ,  ( ( x  /  2 )  +  ( 1  /  2
) ) ) ) ) )
32843, 44, 90pcocn 18531 . . . 4  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
329328, 45pcoval 18525 . . 3  |-  ( ph  ->  ( ( F ( *p `  J ) G ) ( *p
`  J ) H )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( ( F ( *p `  J ) G ) `  (
2  x.  x ) ) ,  ( H `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
330190, 327, 3293eqtr4rd 2339 . 2  |-  ( ph  ->  ( ( F ( *p `  J ) G ) ( *p
`  J ) H )  =  ( ( F ( *p `  J ) ( G ( *p `  J
) H ) )  o.  P ) )
331 id 19 . . . . . . . 8  |-  ( x  =  0  ->  x  =  0 )
332331, 144syl6eqbr 4076 . . . . . . 7  |-  ( x  =  0  ->  x  <_  ( 1  /  2
) )
333332, 136syl 15 . . . . . 6  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) ) )
334331, 223syl6eqbr 4076 . . . . . . 7  |-  ( x  =  0  ->  x  <_  ( 1  /  4
) )
335334, 1syl 15 . . . . . 6  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  4 ) ,  ( 2  x.  x
) ,  ( x  +  ( 1  / 
4 ) ) )  =  ( 2  x.  x ) )
336 oveq2 5882 . . . . . . 7  |-  ( x  =  0  ->  (
2  x.  x )  =  ( 2  x.  0 ) )
3374mul01i 9018 . . . . . . 7  |-  ( 2  x.  0 )  =  0
338336, 337syl6eq 2344 . . . . . 6  |-  ( x  =  0  ->  (
2  x.  x )  =  0 )
339333, 335, 3383eqtrd 2332 . . . . 5  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  0 )
340 c0ex 8848 . . . . 5  |-  0  e.  _V
341339, 191, 340fvmpt 5618 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( P `  0 )  =  0 )
342196, 341syl 15 . . 3  |-  ( ph  ->  ( P `  0
)  =  0 )
343149a1i 10 . . . 4  |-  ( ph  ->  1  e.  ( 0 [,] 1 ) )
34433, 6ltnlei 8955 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
345145, 344mpbi 199 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
346 breq1 4042 . . . . . . . 8  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
347345, 346mtbiri 294 . . . . . . 7  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
348347, 183syl 15 . . . . . 6  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  ( ( x  /  2 )  +  ( 1  / 
2 ) ) )
349 oveq1 5881 . . . . . . . 8  |-  ( x  =  1  ->  (
x  /  2 )  =  ( 1  / 
2 ) )
350349oveq1d 5889 . . . . . . 7  |-  ( x  =  1  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  =  ( ( 1  /  2 )  +  ( 1  /  2
) ) )
351350, 85syl6eq 2344 . . . . . 6  |-  ( x  =  1  ->  (
( x  /  2
)  +  ( 1  /  2 ) )  =  1 )
352348, 351eqtrd 2328 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) )  =  1 )
353 1ex 8849 . . . . 5  |-  1  e.  _V
354352, 191, 353fvmpt 5618 . . . 4  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( P `  1 )  =  1 )
355343, 354syl 15 . . 3  |-  ( ph  ->  ( P `  1
)  =  1 )
356321, 314, 342, 355reparpht 18512 . 2  |-  ( ph  ->  ( ( F ( *p `  J ) ( G ( *p
`  J ) H ) )  o.  P
) (  ~=ph  `  J
) ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) )
357330, 356eqbrtrd 4059 1  |-  ( ph  ->  ( ( F ( *p `  J ) G ) ( *p
`  J ) H ) (  ~=ph  `  J
) ( F ( *p `  J ) ( G ( *p
`  J ) H ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    C_ wss 3165   ifcif 3578   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   4c4 9813   (,)cioo 10672   [,]cicc 10675   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   Topctop 16647  TopOnctopon 16648    Cn ccn 16970    tX ctx 17271   IIcii 18395    ~=ph cphtpc 18483   *pcpco 18514
This theorem is referenced by:  pcophtb  18543  pi1grplem  18563  pi1xfr  18569  pi1xfrcnvlem  18570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pco 18519
  Copyright terms: Public domain W3C validator