MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcocn Unicode version

Theorem pcocn 18515
Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
pcoval2.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
Assertion
Ref Expression
pcocn  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )

Proof of Theorem pcocn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 pcoval.3 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
31, 2pcoval 18509 . 2  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
4 iitopon 18383 . . . 4  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
54a1i 10 . . 3  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
65cnmptid 17355 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
7 0elunit 10754 . . . . 5  |-  0  e.  ( 0 [,] 1
)
87a1i 10 . . . 4  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
95, 5, 8cnmptc 17356 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
10 eqid 2283 . . . 4  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
11 eqid 2283 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
12 eqid 2283 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
13 dfii2 18386 . . . 4  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
14 0re 8838 . . . . 5  |-  0  e.  RR
1514a1i 10 . . . 4  |-  ( ph  ->  0  e.  RR )
16 1re 8837 . . . . 5  |-  1  e.  RR
1716a1i 10 . . . 4  |-  ( ph  ->  1  e.  RR )
18 rehalfcl 9938 . . . . . . 7  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
1916, 18ax-mp 8 . . . . . 6  |-  ( 1  /  2 )  e.  RR
20 halfgt0 9932 . . . . . . 7  |-  0  <  ( 1  /  2
)
2114, 19, 20ltleii 8941 . . . . . 6  |-  0  <_  ( 1  /  2
)
22 halflt1 9933 . . . . . . 7  |-  ( 1  /  2 )  <  1
2319, 16, 22ltleii 8941 . . . . . 6  |-  ( 1  /  2 )  <_ 
1
2414, 16elicc2i 10716 . . . . . 6  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
2519, 21, 23, 24mpbir3an 1134 . . . . 5  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
2625a1i 10 . . . 4  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
27 pcoval2.4 . . . . . 6  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
2827adantr 451 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( F `  1
)  =  ( G `
 0 ) )
29 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
3029oveq2d 5874 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
31 2cn 9816 . . . . . . . 8  |-  2  e.  CC
32 2ne0 9829 . . . . . . . 8  |-  2  =/=  0
3331, 32recidi 9491 . . . . . . 7  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
3430, 33syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  1 )
3534fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
2  x.  y ) )  =  ( F `
 1 ) )
3634oveq1d 5873 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
37 1m1e0 9814 . . . . . . 7  |-  ( 1  -  1 )  =  0
3836, 37syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  y )  -  1 )  =  0 )
3938fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( G `  (
( 2  x.  y
)  -  1 ) )  =  ( G `
 0 ) )
4028, 35, 393eqtr4d 2325 . . . 4  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
2  x.  y ) )  =  ( G `
 ( ( 2  x.  y )  - 
1 ) ) )
41 retopon 18272 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
42 iccssre 10731 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
4314, 19, 42mp2an 653 . . . . . . 7  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
44 resttopon 16892 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
4541, 43, 44mp2an 653 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
4645a1i 10 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
4746, 5cnmpt1st 17362 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
4811iihalf1cn 18430 . . . . . . 7  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
4948a1i 10 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  x
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
50 oveq2 5866 . . . . . 6  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
5146, 5, 47, 46, 49, 50cnmpt21 17365 . . . . 5  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
5246, 5, 51, 1cnmpt21f 17366 . . . 4  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( F `  (
2  x.  y ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  J
) )
53 iccssre 10731 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
5419, 16, 53mp2an 653 . . . . . . 7  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
55 resttopon 16892 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
5641, 54, 55mp2an 653 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
5756a1i 10 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
5857, 5cnmpt1st 17362 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
5912iihalf2cn 18432 . . . . . . 7  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
6059a1i 10 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
6150oveq1d 5873 . . . . . 6  |-  ( x  =  y  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
6257, 5, 58, 57, 60, 61cnmpt21 17365 . . . . 5  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
6357, 5, 62, 2cnmpt21f 17366 . . . 4  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( G `  (
( 2  x.  y
)  -  1 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  J
) )
6410, 11, 12, 13, 15, 17, 26, 5, 40, 52, 63cnmpt2pc 18426 . . 3  |-  ( ph  ->  ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  y ) ) ,  ( G `  (
( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( II  tX  II )  Cn  J
) )
65 breq1 4026 . . . . 5  |-  ( y  =  x  ->  (
y  <_  ( 1  /  2 )  <->  x  <_  ( 1  /  2 ) ) )
66 oveq2 5866 . . . . . 6  |-  ( y  =  x  ->  (
2  x.  y )  =  ( 2  x.  x ) )
6766fveq2d 5529 . . . . 5  |-  ( y  =  x  ->  ( F `  ( 2  x.  y ) )  =  ( F `  (
2  x.  x ) ) )
6866oveq1d 5873 . . . . . 6  |-  ( y  =  x  ->  (
( 2  x.  y
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
6968fveq2d 5529 . . . . 5  |-  ( y  =  x  ->  ( G `  ( (
2  x.  y )  -  1 ) )  =  ( G `  ( ( 2  x.  x )  -  1 ) ) )
7065, 67, 69ifbieq12d 3587 . . . 4  |-  ( y  =  x  ->  if ( y  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  y
) ) ,  ( G `  ( ( 2  x.  y )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )
7170adantr 451 . . 3  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  y ) ) ,  ( G `  ( ( 2  x.  y )  -  1 ) ) )  =  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) )
725, 6, 9, 5, 5, 64, 71cnmpt12 17361 . 2  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) )  e.  ( II  Cn  J
) )
733, 72eqeltrd 2357 1  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ran crn 4690   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   (,)cioo 10656   [,]cicc 10659   ↾t crest 13325   topGenctg 13342  TopOnctopon 16632    Cn ccn 16954   IIcii 18379   *pcpco 18498
This theorem is referenced by:  copco  18516  pcohtpylem  18517  pcohtpy  18518  pcoass  18522  pcorevlem  18524  om1addcl  18531  pi1xfrf  18551  pi1xfr  18553  pi1xfrcnvlem  18554  pi1coghm  18559  conpcon  23766  sconpht2  23769  cvmlift3lem6  23855
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-pco 18503
  Copyright terms: Public domain W3C validator