Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconcon Unicode version

Theorem pconcon 23762
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconcon  |-  ( J  e. PCon  ->  J  e.  Con )

Proof of Theorem pconcon
Dummy variables  a 
b  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 936 . . . 4  |-  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  <->  ( ( x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) ) )
2 n0 3464 . . . . . . . 8  |-  ( x  =/=  (/)  <->  E. a  a  e.  x )
3 n0 3464 . . . . . . . 8  |-  ( y  =/=  (/)  <->  E. b  b  e.  y )
42, 3anbi12i 678 . . . . . . 7  |-  ( ( x  =/=  (/)  /\  y  =/=  (/) )  <->  ( E. a  a  e.  x  /\  E. b  b  e.  y ) )
5 eeanv 1854 . . . . . . 7  |-  ( E. a E. b ( a  e.  x  /\  b  e.  y )  <->  ( E. a  a  e.  x  /\  E. b 
b  e.  y ) )
64, 5bitr4i 243 . . . . . 6  |-  ( ( x  =/=  (/)  /\  y  =/=  (/) )  <->  E. a E. b ( a  e.  x  /\  b  e.  y ) )
7 simpll 730 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  J  e. PCon )
8 simprll 738 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  a  e.  x )
9 simplrl 736 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  x  e.  J )
10 elunii 3832 . . . . . . . . . . 11  |-  ( ( a  e.  x  /\  x  e.  J )  ->  a  e.  U. J
)
118, 9, 10syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  a  e.  U. J )
12 simprlr 739 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  b  e.  y )
13 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  y  e.  J )
14 elunii 3832 . . . . . . . . . . 11  |-  ( ( b  e.  y  /\  y  e.  J )  ->  b  e.  U. J
)
1512, 13, 14syl2anc 642 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  b  e.  U. J )
16 eqid 2283 . . . . . . . . . . 11  |-  U. J  =  U. J
1716pconcn 23755 . . . . . . . . . 10  |-  ( ( J  e. PCon  /\  a  e.  U. J  /\  b  e.  U. J )  ->  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) )
187, 11, 15, 17syl3anc 1182 . . . . . . . . 9  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )
19 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  i^i  y )  =  (/) )
20 simplrr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
)  ->  ( f `  1 )  =  b )
2120adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  1 )  =  b )
22 iiuni 18385 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0 [,] 1 )  = 
U. II
23 iicon 18391 . . . . . . . . . . . . . . . . . . . . . 22  |-  II  e.  Con
2423a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  II  e.  Con )
25 simprll 738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  f  e.  ( II  Cn  J
) )
269adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  x  e.  J )
27 uncom 3319 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  u.  x )  =  ( x  u.  y
)
28 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  u.  y )  =  U. J )
2927, 28syl5eq 2327 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
y  u.  x )  =  U. J )
3013adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  y  e.  J )
31 elssuni 3855 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  J  ->  y  C_ 
U. J )
3230, 31syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  y  C_ 
U. J )
33 incom 3361 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  i^i  x )  =  ( x  i^i  y
)
3433, 19syl5eq 2327 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
y  i^i  x )  =  (/) )
35 uneqdifeq 3542 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  C_  U. J  /\  ( y  i^i  x
)  =  (/) )  -> 
( ( y  u.  x )  =  U. J 
<->  ( U. J  \ 
y )  =  x ) )
3632, 34, 35syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
( y  u.  x
)  =  U. J  <->  ( U. J  \  y
)  =  x ) )
3729, 36mpbid 201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  ( U. J  \  y
)  =  x )
38 pcontop 23756 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  e. PCon  ->  J  e.  Top )
3938ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  J  e.  Top )
4016opncld 16770 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
4139, 30, 40syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  ( U. J  \  y
)  e.  ( Clsd `  J ) )
4237, 41eqeltrrd 2358 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  x  e.  ( Clsd `  J
) )
43 0elunit 10754 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  ( 0 [,] 1
)
4443a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  0  e.  ( 0 [,] 1
) )
45 simplrl 736 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
)  ->  ( f `  0 )  =  a )
4645adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  0 )  =  a )
478adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  a  e.  x )
4846, 47eqeltrd 2357 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  0 )  e.  x )
4922, 24, 25, 26, 42, 44, 48concn 17152 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  f : ( 0 [,] 1 ) --> x )
50 1elunit 10755 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( 0 [,] 1
)
51 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f : ( 0 [,] 1 ) --> x  /\  1  e.  ( 0 [,] 1 ) )  ->  ( f `  1 )  e.  x )
5249, 50, 51sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  1 )  e.  x )
5321, 52eqeltrrd 2358 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  b  e.  x )
5412adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  b  e.  y )
55 inelcm 3509 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  x  /\  b  e.  y )  ->  ( x  i^i  y
)  =/=  (/) )
5653, 54, 55syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  i^i  y )  =/=  (/) )
5756neneqd 2462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  -.  ( x  i^i  y
)  =  (/) )
5819, 57pm2.65i 165 . . . . . . . . . . . . . . 15  |-  -.  (
( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )
5958pm2.21i 123 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  -.  ( x  u.  y
)  =  U. J
)
6059expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  -> 
( ( x  u.  y )  =  U. J  ->  -.  ( x  u.  y )  =  U. J ) )
6160pm2.01d 161 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  ->  -.  ( x  u.  y
)  =  U. J
)
62 df-ne 2448 . . . . . . . . . . . 12  |-  ( ( x  u.  y )  =/=  U. J  <->  -.  (
x  u.  y )  =  U. J )
6361, 62sylibr 203 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  -> 
( x  u.  y
)  =/=  U. J
)
6463expr 598 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  f  e.  ( II  Cn  J
) )  ->  (
( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b )  ->  ( x  u.  y )  =/=  U. J ) )
6564rexlimdva 2667 . . . . . . . . 9  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  ( E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b )  ->  ( x  u.  y )  =/=  U. J ) )
6618, 65mpd 14 . . . . . . . 8  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  (
x  u.  y )  =/=  U. J )
6766exp32 588 . . . . . . 7  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
a  e.  x  /\  b  e.  y )  ->  ( ( x  i^i  y )  =  (/)  ->  ( x  u.  y
)  =/=  U. J
) ) )
6867exlimdvv 1668 . . . . . 6  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( E. a E. b ( a  e.  x  /\  b  e.  y )  ->  (
( x  i^i  y
)  =  (/)  ->  (
x  u.  y )  =/=  U. J ) ) )
696, 68syl5bi 208 . . . . 5  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
x  =/=  (/)  /\  y  =/=  (/) )  ->  (
( x  i^i  y
)  =  (/)  ->  (
x  u.  y )  =/=  U. J ) ) )
7069imp3a 420 . . . 4  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )
711, 70syl5bi 208 . . 3  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) )
7271ralrimivva 2635 . 2  |-  ( J  e. PCon  ->  A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )
7316toptopon 16671 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
7438, 73sylib 188 . . 3  |-  ( J  e. PCon  ->  J  e.  (TopOn `  U. J ) )
75 dfcon2 17145 . . 3  |-  ( J  e.  (TopOn `  U. J )  ->  ( J  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) ) )
7674, 75syl 15 . 2  |-  ( J  e. PCon  ->  ( J  e. 
Con 
<-> 
A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) ) )
7772, 76mpbird 223 1  |-  ( J  e. PCon  ->  J  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   U.cuni 3827   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738   [,]cicc 10659   Topctop 16631  TopOnctopon 16632   Clsdccld 16753    Cn ccn 16954   Conccon 17137   IIcii 18379  PConcpcon 23750
This theorem is referenced by:  rescon  23777  iinllycon  23785  cvmlift2lem10  23843  cvmlift3  23859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-cn 16957  df-con 17138  df-ii 18381  df-pcon 23752
  Copyright terms: Public domain W3C validator