Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconcon Unicode version

Theorem pconcon 24875
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconcon  |-  ( J  e. PCon  ->  J  e.  Con )

Proof of Theorem pconcon
Dummy variables  a 
b  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 938 . . . 4  |-  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  <->  ( ( x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) ) )
2 n0 3601 . . . . . . . 8  |-  ( x  =/=  (/)  <->  E. a  a  e.  x )
3 n0 3601 . . . . . . . 8  |-  ( y  =/=  (/)  <->  E. b  b  e.  y )
42, 3anbi12i 679 . . . . . . 7  |-  ( ( x  =/=  (/)  /\  y  =/=  (/) )  <->  ( E. a  a  e.  x  /\  E. b  b  e.  y ) )
5 eeanv 1933 . . . . . . 7  |-  ( E. a E. b ( a  e.  x  /\  b  e.  y )  <->  ( E. a  a  e.  x  /\  E. b 
b  e.  y ) )
64, 5bitr4i 244 . . . . . 6  |-  ( ( x  =/=  (/)  /\  y  =/=  (/) )  <->  E. a E. b ( a  e.  x  /\  b  e.  y ) )
7 simpll 731 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  J  e. PCon )
8 simprll 739 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  a  e.  x )
9 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  x  e.  J )
10 elunii 3984 . . . . . . . . . . 11  |-  ( ( a  e.  x  /\  x  e.  J )  ->  a  e.  U. J
)
118, 9, 10syl2anc 643 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  a  e.  U. J )
12 simprlr 740 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  b  e.  y )
13 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  y  e.  J )
14 elunii 3984 . . . . . . . . . . 11  |-  ( ( b  e.  y  /\  y  e.  J )  ->  b  e.  U. J
)
1512, 13, 14syl2anc 643 . . . . . . . . . 10  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  b  e.  U. J )
16 eqid 2408 . . . . . . . . . . 11  |-  U. J  =  U. J
1716pconcn 24868 . . . . . . . . . 10  |-  ( ( J  e. PCon  /\  a  e.  U. J  /\  b  e.  U. J )  ->  E. f  e.  (
II  Cn  J )
( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) )
187, 11, 15, 17syl3anc 1184 . . . . . . . . 9  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )
19 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  i^i  y )  =  (/) )
20 simplrr 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
)  ->  ( f `  1 )  =  b )
2120adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  1 )  =  b )
22 iiuni 18868 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  = 
U. II
23 iicon 18874 . . . . . . . . . . . . . . . . . 18  |-  II  e.  Con
2423a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  II  e.  Con )
25 simprll 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  f  e.  ( II  Cn  J
) )
269adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  x  e.  J )
27 uncom 3455 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  u.  x )  =  ( x  u.  y
)
28 simprr 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  u.  y )  =  U. J )
2927, 28syl5eq 2452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
y  u.  x )  =  U. J )
3013adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  y  e.  J )
31 elssuni 4007 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  J  ->  y  C_ 
U. J )
3230, 31syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  y  C_ 
U. J )
33 incom 3497 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  i^i  x )  =  ( x  i^i  y
)
3433, 19syl5eq 2452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
y  i^i  x )  =  (/) )
35 uneqdifeq 3680 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  C_  U. J  /\  ( y  i^i  x
)  =  (/) )  -> 
( ( y  u.  x )  =  U. J 
<->  ( U. J  \ 
y )  =  x ) )
3632, 34, 35syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
( y  u.  x
)  =  U. J  <->  ( U. J  \  y
)  =  x ) )
3729, 36mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  ( U. J  \  y
)  =  x )
38 pcontop 24869 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e. PCon  ->  J  e.  Top )
3938ad3antrrr 711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  J  e.  Top )
4016opncld 17056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
4139, 30, 40syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  ( U. J  \  y
)  e.  ( Clsd `  J ) )
4237, 41eqeltrrd 2483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  x  e.  ( Clsd `  J
) )
43 0elunit 10975 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ( 0 [,] 1
)
4443a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  0  e.  ( 0 [,] 1
) )
45 simplrl 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
)  ->  ( f `  0 )  =  a )
4645adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  0 )  =  a )
478adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  a  e.  x )
4846, 47eqeltrd 2482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  0 )  e.  x )
4922, 24, 25, 26, 42, 44, 48concn 17446 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  f : ( 0 [,] 1 ) --> x )
50 1elunit 10976 . . . . . . . . . . . . . . . 16  |-  1  e.  ( 0 [,] 1
)
51 ffvelrn 5831 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> x  /\  1  e.  ( 0 [,] 1 ) )  ->  ( f `  1 )  e.  x )
5249, 50, 51sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
f `  1 )  e.  x )
5321, 52eqeltrrd 2483 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  b  e.  x )
5412adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  b  e.  y )
55 inelcm 3646 . . . . . . . . . . . . . 14  |-  ( ( b  e.  x  /\  b  e.  y )  ->  ( x  i^i  y
)  =/=  (/) )
5653, 54, 55syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  (
x  i^i  y )  =/=  (/) )
5719, 56pm2.21ddne 2645 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  a  /\  ( f `
 1 )  =  b ) )  /\  ( x  u.  y
)  =  U. J
) )  ->  -.  ( x  u.  y
)  =  U. J
)
5857expr 599 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  -> 
( ( x  u.  y )  =  U. J  ->  -.  ( x  u.  y )  =  U. J ) )
5958pm2.01d 163 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  ->  -.  ( x  u.  y
)  =  U. J
)
6059neneqad 2641 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  /\  (
f  e.  ( II 
Cn  J )  /\  ( ( f ` 
0 )  =  a  /\  ( f ` 
1 )  =  b ) ) )  -> 
( x  u.  y
)  =/=  U. J
)
6118, 60rexlimddv 2798 . . . . . . . 8  |-  ( ( ( J  e. PCon  /\  ( x  e.  J  /\  y  e.  J
) )  /\  (
( a  e.  x  /\  b  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )  ->  (
x  u.  y )  =/=  U. J )
6261exp32 589 . . . . . . 7  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
a  e.  x  /\  b  e.  y )  ->  ( ( x  i^i  y )  =  (/)  ->  ( x  u.  y
)  =/=  U. J
) ) )
6362exlimdvv 1644 . . . . . 6  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( E. a E. b ( a  e.  x  /\  b  e.  y )  ->  (
( x  i^i  y
)  =  (/)  ->  (
x  u.  y )  =/=  U. J ) ) )
646, 63syl5bi 209 . . . . 5  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
x  =/=  (/)  /\  y  =/=  (/) )  ->  (
( x  i^i  y
)  =  (/)  ->  (
x  u.  y )  =/=  U. J ) ) )
6564imp3a 421 . . . 4  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
( x  =/=  (/)  /\  y  =/=  (/) )  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )
661, 65syl5bi 209 . . 3  |-  ( ( J  e. PCon  /\  (
x  e.  J  /\  y  e.  J )
)  ->  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) )
6766ralrimivva 2762 . 2  |-  ( J  e. PCon  ->  A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) )
6816toptopon 16957 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
6938, 68sylib 189 . . 3  |-  ( J  e. PCon  ->  J  e.  (TopOn `  U. J ) )
70 dfcon2 17439 . . 3  |-  ( J  e.  (TopOn `  U. J )  ->  ( J  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
x  =/=  (/)  /\  y  =/=  (/)  /\  ( x  i^i  y )  =  (/) )  ->  ( x  u.  y )  =/=  U. J ) ) )
7169, 70syl 16 . 2  |-  ( J  e. PCon  ->  ( J  e. 
Con 
<-> 
A. x  e.  J  A. y  e.  J  ( ( x  =/=  (/)  /\  y  =/=  (/)  /\  (
x  i^i  y )  =  (/) )  ->  (
x  u.  y )  =/=  U. J ) ) )
7267, 71mpbird 224 1  |-  ( J  e. PCon  ->  J  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   E.wrex 2671    \ cdif 3281    u. cun 3282    i^i cin 3283    C_ wss 3284   (/)c0 3592   U.cuni 3979   -->wf 5413   ` cfv 5417  (class class class)co 6044   0cc0 8950   1c1 8951   [,]cicc 10879   Topctop 16917  TopOnctopon 16918   Clsdccld 17039    Cn ccn 17246   Conccon 17431   IIcii 18862  PConcpcon 24863
This theorem is referenced by:  rescon  24890  iinllycon  24898  cvmlift2lem10  24956  cvmlift3  24972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-fi 7378  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-q 10535  df-rp 10573  df-xneg 10670  df-xadd 10671  df-xmul 10672  df-ioo 10880  df-ico 10882  df-icc 10883  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-rest 13609  df-topgen 13626  df-psmet 16653  df-xmet 16654  df-met 16655  df-bl 16656  df-mopn 16657  df-top 16922  df-bases 16924  df-topon 16925  df-cld 17042  df-cn 17249  df-con 17432  df-ii 18864  df-pcon 24865
  Copyright terms: Public domain W3C validator