Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconpi1 Structured version   Unicode version

Theorem pconpi1 24924
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pconpi1.x  |-  X  = 
U. J
pconpi1.p  |-  P  =  ( J  pi 1  A )
pconpi1.q  |-  Q  =  ( J  pi 1  B )
pconpi1.s  |-  S  =  ( Base `  P
)
pconpi1.t  |-  T  =  ( Base `  Q
)
Assertion
Ref Expression
pconpi1  |-  ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  ->  P  ~=ph𝑔  Q )

Proof of Theorem pconpi1
Dummy variables  f  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconpi1.x . . 3  |-  X  = 
U. J
21pconcn 24911 . 2  |-  ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  ->  E. f  e.  ( II  Cn  J
) ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) )
3 eqid 2436 . . . . 5  |-  ( J  pi 1  ( f `
 0 ) )  =  ( J  pi 1  ( f ` 
0 ) )
4 eqid 2436 . . . . 5  |-  ( J  pi 1  ( f `
 1 ) )  =  ( J  pi 1  ( f ` 
1 ) )
5 eqid 2436 . . . . 5  |-  ( Base `  ( J  pi 1 
( f `  0
) ) )  =  ( Base `  ( J  pi 1  ( f `
 0 ) ) )
6 eqid 2436 . . . . 5  |-  ran  (
h  e.  U. ( Base `  ( J  pi 1  ( f ` 
0 ) ) ) 
|->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  =  ran  ( h  e.  U. ( Base `  ( J  pi 1  ( f ` 
0 ) ) ) 
|->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )
7 simpl1 960 . . . . . . 7  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  J  e. PCon )
8 pcontop 24912 . . . . . . 7  |-  ( J  e. PCon  ->  J  e.  Top )
97, 8syl 16 . . . . . 6  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  J  e.  Top )
101toptopon 16998 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
119, 10sylib 189 . . . . 5  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  J  e.  (TopOn `  X ) )
12 simprl 733 . . . . 5  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  f  e.  ( II  Cn  J ) )
13 oveq2 6089 . . . . . . 7  |-  ( x  =  y  ->  (
1  -  x )  =  ( 1  -  y ) )
1413fveq2d 5732 . . . . . 6  |-  ( x  =  y  ->  (
f `  ( 1  -  x ) )  =  ( f `  (
1  -  y ) ) )
1514cbvmptv 4300 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) )  =  ( y  e.  ( 0 [,] 1
)  |->  ( f `  ( 1  -  y
) ) )
163, 4, 5, 6, 11, 12, 15pi1xfrgim 19083 . . . 4  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ran  ( h  e.  U. ( Base `  ( J  pi 1  ( f `
 0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  (
( J  pi 1 
( f `  0
) ) GrpIso  ( J  pi 1  ( f `  1 ) ) ) )
17 simprrl 741 . . . . . . 7  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( f ` 
0 )  =  A )
1817oveq2d 6097 . . . . . 6  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( J  pi 1  ( f ` 
0 ) )  =  ( J  pi 1  A ) )
19 pconpi1.p . . . . . 6  |-  P  =  ( J  pi 1  A )
2018, 19syl6eqr 2486 . . . . 5  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( J  pi 1  ( f ` 
0 ) )  =  P )
21 simprrr 742 . . . . . . 7  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( f ` 
1 )  =  B )
2221oveq2d 6097 . . . . . 6  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( J  pi 1  ( f ` 
1 ) )  =  ( J  pi 1  B ) )
23 pconpi1.q . . . . . 6  |-  Q  =  ( J  pi 1  B )
2422, 23syl6eqr 2486 . . . . 5  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( J  pi 1  ( f ` 
1 ) )  =  Q )
2520, 24oveq12d 6099 . . . 4  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ( ( J  pi 1  ( f `
 0 ) ) GrpIso 
( J  pi 1 
( f `  1
) ) )  =  ( P GrpIso  Q ) )
2616, 25eleqtrd 2512 . . 3  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  ran  ( h  e.  U. ( Base `  ( J  pi 1  ( f `
 0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  ( P GrpIso  Q ) )
27 brgici 15057 . . 3  |-  ( ran  ( h  e.  U. ( Base `  ( J  pi 1  ( f `  0 ) ) )  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( ( x  e.  ( 0 [,] 1 )  |->  ( f `
 ( 1  -  x ) ) ) ( *p `  J
) ( h ( *p `  J ) f ) ) ] (  ~=ph  `  J )
>. )  e.  ( P GrpIso  Q )  ->  P  ~=ph𝑔  Q )
2826, 27syl 16 . 2  |-  ( ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  /\  ( f  e.  ( II  Cn  J )  /\  ( ( f `
 0 )  =  A  /\  ( f `
 1 )  =  B ) ) )  ->  P  ~=ph𝑔 
Q )
292, 28rexlimddv 2834 1  |-  ( ( J  e. PCon  /\  A  e.  X  /\  B  e.  X )  ->  P  ~=ph𝑔  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   <.cop 3817   U.cuni 4015   class class class wbr 4212    e. cmpt 4266   ran crn 4879   ` cfv 5454  (class class class)co 6081   [cec 6903   0cc0 8990   1c1 8991    - cmin 9291   [,]cicc 10919   Basecbs 13469   GrpIso cgim 15044    ~=ph𝑔 cgic 15045   Topctop 16958  TopOnctopon 16959    Cn ccn 17288   IIcii 18905    ~=ph cphtpc 18994   *pcpco 19025    pi 1 cpi1 19028  PConcpcon 24906
This theorem is referenced by:  sconpi1  24926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-divs 13735  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-grp 14812  df-mulg 14815  df-ghm 15004  df-gim 15046  df-gic 15047  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-cn 17291  df-cnp 17292  df-tx 17594  df-hmeo 17787  df-xms 18350  df-ms 18351  df-tms 18352  df-ii 18907  df-htpy 18995  df-phtpy 18996  df-phtpc 19017  df-pco 19030  df-om1 19031  df-pi1 19033  df-pcon 24908
  Copyright terms: Public domain W3C validator