MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Unicode version

Theorem pcopt 18520
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pcopt  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )

Proof of Theorem pcopt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
21fveq1i 5526 . . . . . . . . 9  |-  ( P `
 ( 2  x.  x ) )  =  ( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )
3 simpr 447 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  =  Y )
4 iiuni 18385 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  = 
U. II
5 eqid 2283 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
64, 5cnf 16976 . . . . . . . . . . . . 13  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
76adantr 451 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F : ( 0 [,] 1 ) --> U. J
)
8 0elunit 10754 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] 1
)
9 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  e.  U. J )
107, 8, 9sylancl 643 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  e.  U. J
)
113, 10eqeltrrd 2358 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  Y  e.  U. J )
12 elii1 18433 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
13 iihalf1 18429 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
1412, 13sylbir 204 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
15 fvconst2g 5727 . . . . . . . . . 10  |-  ( ( Y  e.  U. J  /\  ( 2  x.  x
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { Y }
) `  ( 2  x.  x ) )  =  Y )
1611, 14, 15syl2an 463 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )  =  Y )
172, 16syl5eq 2327 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  Y )
18 simplr 731 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( F `  0
)  =  Y )
1917, 18eqtr4d 2318 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  ( F `
 0 ) )
2019ifeq1d 3579 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2120expr 598 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  (
x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
22 iffalse 3572 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
23 iffalse 3572 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( F ` 
0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
2422, 23eqtr4d 2318 . . . . 5  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2521, 24pm2.61d1 151 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) ) )
2625mpteq2dva 4106 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( P `
 ( 2  x.  x ) ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
27 cntop2 16971 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
2827adantr 451 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  Top )
295toptopon 16671 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3028, 29sylib 188 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  (TopOn `  U. J ) )
311pcoptcl 18519 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3230, 11, 31syl2anc 642 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3332simp1d 967 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  P  e.  ( II  Cn  J ) )
34 simpl 443 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  e.  ( II  Cn  J ) )
3533, 34pcoval 18509 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
36 iffalse 3572 . . . . . . . . 9  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  =  ( ( 2  x.  x )  -  1 ) )
3736adantl 452 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  =  ( ( 2  x.  x )  -  1 ) )
38 elii2 18434 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
39 iihalf2 18431 . . . . . . . . 9  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
4038, 39syl 15 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
4137, 40eqeltrd 2357 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  e.  ( 0 [,] 1
) )
4241ex 423 . . . . . 6  |-  ( x  e.  ( 0 [,] 1 )  ->  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  e.  ( 0 [,] 1 ) ) )
43 iftrue 3571 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
4443, 8syl6eqel 2371 . . . . . 6  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4542, 44pm2.61d2 152 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4645adantl 452 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
47 eqid 2283 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
4847a1i 10 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) )
497feqmptd 5575 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) ) )
50 fveq2 5525 . . . . 5  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) )
51 fvif 5540 . . . . 5  |-  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )
5250, 51syl6eq 2331 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
5346, 48, 49, 52fmptco 5691 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
5426, 35, 533eqtr4d 2325 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( F  o.  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) ) )
55 iitopon 18383 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
5655a1i 10 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  II  e.  (TopOn `  (
0 [,] 1 ) ) )
5756cnmptid 17355 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
588a1i 10 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  ( 0 [,] 1 ) )
5956, 56, 58cnmptc 17356 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
60 eqid 2283 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
61 eqid 2283 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
62 eqid 2283 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
63 dfii2 18386 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
64 0re 8838 . . . . . 6  |-  0  e.  RR
6564a1i 10 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  RR )
66 1re 8837 . . . . . 6  |-  1  e.  RR
6766a1i 10 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
1  e.  RR )
68 rehalfcl 9938 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
6966, 68ax-mp 8 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
70 halfgt0 9932 . . . . . . . 8  |-  0  <  ( 1  /  2
)
7164, 69, 70ltleii 8941 . . . . . . 7  |-  0  <_  ( 1  /  2
)
72 halflt1 9933 . . . . . . . 8  |-  ( 1  /  2 )  <  1
7369, 66, 72ltleii 8941 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
7464, 66elicc2i 10716 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
7569, 71, 73, 74mpbir3an 1134 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
7675a1i 10 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( 1  /  2
)  e.  ( 0 [,] 1 ) )
77 simprl 732 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
7877oveq2d 5874 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
79 2cn 9816 . . . . . . . . 9  |-  2  e.  CC
80 2ne0 9829 . . . . . . . . 9  |-  2  =/=  0
8179, 80recidi 9491 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
8278, 81syl6eq 2331 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  1 )
8382oveq1d 5873 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
84 1m1e0 9814 . . . . . 6  |-  ( 1  -  1 )  =  0
8583, 84syl6req 2332 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
0  =  ( ( 2  x.  y )  -  1 ) )
86 retopon 18272 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
87 iccssre 10731 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
8864, 69, 87mp2an 653 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
89 resttopon 16892 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
9086, 88, 89mp2an 653 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
9190a1i 10 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
9291, 56, 56, 58cnmpt2c 17364 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
93 iccssre 10731 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
9469, 66, 93mp2an 653 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
95 resttopon 16892 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9686, 94, 95mp2an 653 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
9796a1i 10 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9897, 56cnmpt1st 17362 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
9962iihalf2cn 18432 . . . . . . 7  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
10099a1i 10 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
101 oveq2 5866 . . . . . . 7  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
102101oveq1d 5873 . . . . . 6  |-  ( x  =  y  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
10397, 56, 98, 97, 100, 102cnmpt21 17365 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
10460, 61, 62, 63, 65, 67, 76, 56, 85, 92, 103cnmpt2pc 18426 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  y )  -  1 ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
105 breq1 4026 . . . . . 6  |-  ( y  =  x  ->  (
y  <_  ( 1  /  2 )  <->  x  <_  ( 1  /  2 ) ) )
106 oveq2 5866 . . . . . . 7  |-  ( y  =  x  ->  (
2  x.  y )  =  ( 2  x.  x ) )
107106oveq1d 5873 . . . . . 6  |-  ( y  =  x  ->  (
( 2  x.  y
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
108105, 107ifbieq2d 3585 . . . . 5  |-  ( y  =  x  ->  if ( y  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  y
)  -  1 ) )  =  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
109108adantr 451 . . . 4  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  y )  - 
1 ) )  =  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
11056, 57, 59, 56, 56, 104, 109cnmpt12 17361 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  e.  ( II  Cn  II ) )
111 id 19 . . . . . . 7  |-  ( x  =  0  ->  x  =  0 )
112111, 71syl6eqbr 4060 . . . . . 6  |-  ( x  =  0  ->  x  <_  ( 1  /  2
) )
113112, 43syl 15 . . . . 5  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
114 c0ex 8832 . . . . 5  |-  0  e.  _V
115113, 47, 114fvmpt 5602 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
0 )  =  0 )
1168, 115mp1i 11 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 0 )  =  0 )
117 1elunit 10755 . . . 4  |-  1  e.  ( 0 [,] 1
)
11869, 66ltnlei 8939 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
11972, 118mpbi 199 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
120 breq1 4026 . . . . . . . 8  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
121119, 120mtbiri 294 . . . . . . 7  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
122121, 36syl 15 . . . . . 6  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  ( ( 2  x.  x )  - 
1 ) )
123 oveq2 5866 . . . . . . . . 9  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
12479mulid1i 8839 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
125123, 124syl6eq 2331 . . . . . . . 8  |-  ( x  =  1  ->  (
2  x.  x )  =  2 )
126125oveq1d 5873 . . . . . . 7  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  ( 2  -  1 ) )
127 ax-1cn 8795 . . . . . . . 8  |-  1  e.  CC
128 1p1e2 9840 . . . . . . . 8  |-  ( 1  +  1 )  =  2
12979, 127, 127, 128subaddrii 9135 . . . . . . 7  |-  ( 2  -  1 )  =  1
130126, 129syl6eq 2331 . . . . . 6  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  1 )
131122, 130eqtrd 2315 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  1 )
132 1ex 8833 . . . . 5  |-  1  e.  _V
133131, 47, 132fvmpt 5602 . . . 4  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
1 )  =  1 )
134117, 133mp1i 11 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 1 )  =  1 )
13534, 110, 116, 134reparpht 18496 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) ) ( 
~=ph  `  J ) F )
13654, 135eqbrtrd 4043 1  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   ifcif 3565   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ran crn 4690    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   (,)cioo 10656   [,]cicc 10659   ↾t crest 13325   topGenctg 13342   Topctop 16631  TopOnctopon 16632    Cn ccn 16954   IIcii 18379    ~=ph cphtpc 18467   *pcpco 18498
This theorem is referenced by:  pcophtb  18527  pi1grplem  18547  pi1xfr  18553  pi1xfrcnvlem  18554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pco 18503
  Copyright terms: Public domain W3C validator