MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorev2 Unicode version

Theorem pcorev2 18526
Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcorev2.1  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pcorev2.2  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  0
) } )
Assertion
Ref Expression
pcorev2  |-  ( F  e.  ( II  Cn  J )  ->  ( F ( *p `  J ) G ) (  ~=ph  `  J ) P )
Distinct variable groups:    x, F    x, J
Allowed substitution hints:    P( x)    G( x)

Proof of Theorem pcorev2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pcorev2.1 . . . . 5  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
21pcorevcl 18523 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( G  e.  ( II  Cn  J )  /\  ( G `  0 )  =  ( F ` 
1 )  /\  ( G `  1 )  =  ( F ` 
0 ) ) )
32simp1d 967 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  G  e.  ( II  Cn  J
) )
4 eqid 2283 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  |->  ( G `
 ( 1  -  y ) ) )  =  ( y  e.  ( 0 [,] 1
)  |->  ( G `  ( 1  -  y
) ) )
5 eqid 2283 . . . 4  |-  ( ( 0 [,] 1 )  X.  { ( G `
 1 ) } )  =  ( ( 0 [,] 1 )  X.  { ( G `
 1 ) } )
64, 5pcorev 18525 . . 3  |-  ( G  e.  ( II  Cn  J )  ->  (
( y  e.  ( 0 [,] 1 ) 
|->  ( G `  (
1  -  y ) ) ) ( *p
`  J ) G ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( G ` 
1 ) } ) )
73, 6syl 15 . 2  |-  ( F  e.  ( II  Cn  J )  ->  (
( y  e.  ( 0 [,] 1 ) 
|->  ( G `  (
1  -  y ) ) ) ( *p
`  J ) G ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( G ` 
1 ) } ) )
8 iiuni 18385 . . . . . 6  |-  ( 0 [,] 1 )  = 
U. II
9 eqid 2283 . . . . . 6  |-  U. J  =  U. J
108, 9cnf 16976 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
1110feqmptd 5575 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  F  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) ) )
12 iirev 18427 . . . . . . 7  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  y )  e.  ( 0 [,] 1 ) )
13 oveq2 5866 . . . . . . . . 9  |-  ( x  =  ( 1  -  y )  ->  (
1  -  x )  =  ( 1  -  ( 1  -  y
) ) )
1413fveq2d 5529 . . . . . . . 8  |-  ( x  =  ( 1  -  y )  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  ( 1  -  y ) ) ) )
15 fvex 5539 . . . . . . . 8  |-  ( F `
 ( 1  -  ( 1  -  y
) ) )  e. 
_V
1614, 1, 15fvmpt 5602 . . . . . . 7  |-  ( ( 1  -  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 1  -  y ) )  =  ( F `  ( 1  -  (
1  -  y ) ) ) )
1712, 16syl 15 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  ( G `  ( 1  -  y ) )  =  ( F `  ( 1  -  (
1  -  y ) ) ) )
18 ax-1cn 8795 . . . . . . . 8  |-  1  e.  CC
19 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
20 1re 8837 . . . . . . . . . . 11  |-  1  e.  RR
21 iccssre 10731 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
2219, 20, 21mp2an 653 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  RR
2322sseli 3176 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  RR )
2423recnd 8861 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  CC )
25 nncan 9076 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1  -  (
1  -  y ) )  =  y )
2618, 24, 25sylancr 644 . . . . . . 7  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  -  y ) )  =  y )
2726fveq2d 5529 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( 1  -  y ) ) )  =  ( F `  y ) )
2817, 27eqtrd 2315 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  ( G `  ( 1  -  y ) )  =  ( F `  y ) )
2928mpteq2ia 4102 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  |->  ( G `
 ( 1  -  y ) ) )  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) )
3011, 29syl6reqr 2334 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  (
y  e.  ( 0 [,] 1 )  |->  ( G `  ( 1  -  y ) ) )  =  F )
3130oveq1d 5873 . 2  |-  ( F  e.  ( II  Cn  J )  ->  (
( y  e.  ( 0 [,] 1 ) 
|->  ( G `  (
1  -  y ) ) ) ( *p
`  J ) G )  =  ( F ( *p `  J
) G ) )
322simp3d 969 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  ( G `  1 )  =  ( F ` 
0 ) )
3332sneqd 3653 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  { ( G `  1 ) }  =  { ( F `  0 ) } )
3433xpeq2d 4713 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  (
( 0 [,] 1
)  X.  { ( G `  1 ) } )  =  ( ( 0 [,] 1
)  X.  { ( F `  0 ) } ) )
35 pcorev2.2 . . 3  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  0
) } )
3634, 35syl6eqr 2333 . 2  |-  ( F  e.  ( II  Cn  J )  ->  (
( 0 [,] 1
)  X.  { ( G `  1 ) } )  =  P )
377, 31, 363brtr3d 4052 1  |-  ( F  e.  ( II  Cn  J )  ->  ( F ( *p `  J ) G ) (  ~=ph  `  J ) P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    - cmin 9037   [,]cicc 10659    Cn ccn 16954   IIcii 18379    ~=ph cphtpc 18467   *pcpco 18498
This theorem is referenced by:  pcophtb  18527  pi1xfr  18553  pi1xfrcnvlem  18554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pco 18503
  Copyright terms: Public domain W3C validator