MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorevlem Unicode version

Theorem pcorevlem 18540
Description: Lemma for pcorev 18541. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcorev.1  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pcorev.2  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
pcorevlem.3  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
Assertion
Ref Expression
pcorevlem  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Distinct variable groups:    t, s, x, F    G, s, t    J, s, t, x    P, s, t, x
Allowed substitution hints:    G( x)    H( x, t, s)

Proof of Theorem pcorevlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pcorev.1 . . . . 5  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
2 iitopon 18399 . . . . . . 7  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 10 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
4 iirevcn 18444 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II  Cn  II )
54a1i 10 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II 
Cn  II ) )
6 id 19 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F  e.  ( II  Cn  J
) )
73, 5, 6cnmpt11f 17374 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( F `  ( 1  -  x ) ) )  e.  ( II 
Cn  J ) )
81, 7syl5eqel 2380 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  G  e.  ( II  Cn  J
) )
9 1elunit 10771 . . . . 5  |-  1  e.  ( 0 [,] 1
)
10 oveq2 5882 . . . . . . . 8  |-  ( x  =  1  ->  (
1  -  x )  =  ( 1  -  1 ) )
11 1m1e0 9830 . . . . . . . 8  |-  ( 1  -  1 )  =  0
1210, 11syl6eq 2344 . . . . . . 7  |-  ( x  =  1  ->  (
1  -  x )  =  0 )
1312fveq2d 5545 . . . . . 6  |-  ( x  =  1  ->  ( F `  ( 1  -  x ) )  =  ( F `  0
) )
14 fvex 5555 . . . . . 6  |-  ( F `
 0 )  e. 
_V
1513, 1, 14fvmpt 5618 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( G `  1 )  =  ( F ` 
0 ) )
169, 15mp1i 11 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( G `  1 )  =  ( F ` 
0 ) )
178, 6, 16pcocn 18531 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F )  e.  ( II  Cn  J ) )
18 cntop2 16987 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
19 eqid 2296 . . . . . . 7  |-  U. J  =  U. J
2019toptopon 16687 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2118, 20sylib 188 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  (TopOn `  U. J ) )
22 iiuni 18401 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
2322, 19cnf 16992 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
24 ffvelrn 5679 . . . . . 6  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  U. J )
2523, 9, 24sylancl 643 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  e.  U. J )
26 pcorev.2 . . . . . 6  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
2726pcoptcl 18535 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( F `  1 )  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  ( F `  1 )  /\  ( P ` 
1 )  =  ( F `  1 ) ) )
2821, 25, 27syl2anc 642 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( P  e.  ( II  Cn  J )  /\  ( P `  0 )  =  ( F ` 
1 )  /\  ( P `  1 )  =  ( F ` 
1 ) ) )
2928simp1d 967 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  P  e.  ( II  Cn  J
) )
30 pcorevlem.3 . . . 4  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
31 eqid 2296 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
32 eqid 2296 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
33 eqid 2296 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
34 dfii2 18402 . . . . . 6  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
35 0re 8854 . . . . . . 7  |-  0  e.  RR
3635a1i 10 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  0  e.  RR )
37 1re 8853 . . . . . . 7  |-  1  e.  RR
3837a1i 10 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  1  e.  RR )
39 rehalfcl 9954 . . . . . . . . 9  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
4037, 39ax-mp 8 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
41 halfgt0 9948 . . . . . . . . 9  |-  0  <  ( 1  /  2
)
4235, 40, 41ltleii 8957 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
43 halflt1 9949 . . . . . . . . 9  |-  ( 1  /  2 )  <  1
4440, 37, 43ltleii 8957 . . . . . . . 8  |-  ( 1  /  2 )  <_ 
1
4535, 37elicc2i 10732 . . . . . . . 8  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
4640, 42, 44, 45mpbir3an 1134 . . . . . . 7  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
4746a1i 10 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
1  /  2 )  e.  ( 0 [,] 1 ) )
48 simprl 732 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  s  =  ( 1  / 
2 ) )
4948oveq2d 5890 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 2  x.  ( 1  /  2
) ) )
50 2cn 9832 . . . . . . . . . . 11  |-  2  e.  CC
51 2ne0 9845 . . . . . . . . . . 11  |-  2  =/=  0
5250, 51recidi 9507 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
5349, 52syl6eq 2344 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  1 )
5453oveq1d 5889 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  ( 1  -  1 ) )
5554, 11syl6eq 2344 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  0 )
5655oveq2d 5890 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  0 ) )
57 ax-1cn 8811 . . . . . . . . . . 11  |-  1  e.  CC
5857subid1i 9134 . . . . . . . . . 10  |-  ( 1  -  0 )  =  1
5956, 58syl6eq 2344 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  1 )
6053, 59eqtr4d 2331 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
6160oveq2d 5890 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 1  -  t
)  x.  ( 2  x.  s ) )  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) )
6261oveq2d 5890 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
63 retopon 18288 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
64 iccssre 10747 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
6535, 40, 64mp2an 653 . . . . . . . . 9  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
66 resttopon 16908 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6763, 65, 66mp2an 653 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
6867a1i 10 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6968, 3cnmpt2nd 17379 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
70 oveq2 5882 . . . . . . . . 9  |-  ( x  =  t  ->  (
1  -  x )  =  ( 1  -  t ) )
7168, 3, 69, 3, 5, 70cnmpt21 17381 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
7268, 3cnmpt1st 17378 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) ) ) )
7332iihalf1cn 18446 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
7473a1i 10 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] ( 1  / 
2 ) )  |->  ( 2  x.  x ) )  e.  ( ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II ) )
75 oveq2 5882 . . . . . . . . 9  |-  ( x  =  s  ->  (
2  x.  x )  =  ( 2  x.  s ) )
7668, 3, 72, 68, 74, 75cnmpt21 17381 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 2  x.  s ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
77 iimulcn 18452 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II 
tX  II )  Cn  II )
7877a1i 10 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II  tX  II )  Cn  II ) )
79 oveq12 5883 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 2  x.  s ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )
8068, 3, 71, 76, 3, 3, 78, 79cnmpt22 17384 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
81 oveq2 5882 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 2  x.  s
) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) )
8268, 3, 80, 3, 5, 81cnmpt21 17381 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
83 iccssre 10747 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
8440, 37, 83mp2an 653 . . . . . . . . 9  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
85 resttopon 16908 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8663, 84, 85mp2an 653 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
8786a1i 10 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8887, 3cnmpt2nd 17379 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
8987, 3, 88, 3, 5, 70cnmpt21 17381 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
9087, 3cnmpt1st 17378 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) ) ) )
9133iihalf2cn 18448 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
9291a1i 10 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x
)  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II ) )
9375oveq1d 5889 . . . . . . . . . 10  |-  ( x  =  s  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  s )  - 
1 ) )
9487, 3, 90, 87, 92, 93cnmpt21 17381 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 2  x.  s
)  -  1 ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
95 oveq2 5882 . . . . . . . . 9  |-  ( x  =  ( ( 2  x.  s )  - 
1 )  ->  (
1  -  x )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
9687, 3, 94, 3, 5, 95cnmpt21 17381 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
97 oveq12 5883 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )
9887, 3, 89, 96, 3, 3, 78, 97cnmpt22 17384 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
99 oveq2 5882 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
10087, 3, 98, 3, 5, 99cnmpt21 17381 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
10131, 32, 33, 34, 36, 38, 47, 3, 62, 82, 100cnmpt2pc 18442 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
1023, 3, 101, 6cnmpt21f 17382 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( F `  if ( s  <_  ( 1  /  2 ) ,  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
10330, 102syl5eqel 2380 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( II  tX  II )  Cn  J
) )
104 simpr 447 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  y  e.  ( 0 [,] 1 ) )
105 0elunit 10770 . . . . 5  |-  0  e.  ( 0 [,] 1
)
106 simpl 443 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  s  =  y )
107106breq1d 4049 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
108 simpr 447 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  0 )  ->  t  =  0 )
109108oveq2d 5890 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  ( 1  -  0 ) )
110109, 58syl6eq 2344 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  1 )
111106oveq2d 5890 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
112110, 111oveq12d 5892 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 1  x.  ( 2  x.  y ) ) )
113112oveq2d 5890 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) )
114111oveq1d 5889 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
115114oveq2d 5890 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
116110, 115oveq12d 5892 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
117116oveq2d 5890 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
118107, 113, 117ifbieq12d 3600 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  0 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
119118fveq2d 5545 . . . . . 6  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
120 fvex 5555 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
121119, 30, 120ovmpt2a 5994 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
122104, 105, 121sylancl 643 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
123 iftrue 3584 . . . . . . . 8  |-  ( y  <_  ( 1  / 
2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
124123adantl 452 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
125124fveq2d 5545 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ) )
126 elii1 18449 . . . . . . . 8  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  <->  ( y  e.  ( 0 [,] 1
)  /\  y  <_  ( 1  /  2 ) ) )
1278, 6pcoval1 18527 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( G `  ( 2  x.  y ) ) )
128 iihalf1 18445 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  y )  e.  ( 0 [,] 1 ) )
129128adantl 452 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( 2  x.  y )  e.  ( 0 [,] 1 ) )
130 oveq2 5882 . . . . . . . . . . . . 13  |-  ( x  =  ( 2  x.  y )  ->  (
1  -  x )  =  ( 1  -  ( 2  x.  y
) ) )
131130fveq2d 5545 . . . . . . . . . . . 12  |-  ( x  =  ( 2  x.  y )  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
132 fvex 5555 . . . . . . . . . . . 12  |-  ( F `
 ( 1  -  ( 2  x.  y
) ) )  e. 
_V
133131, 1, 132fvmpt 5618 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
134 iccssre 10747 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
13535, 37, 134mp2an 653 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  RR
136135sseli 3189 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  RR )
137136recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
138137mulid2d 8869 . . . . . . . . . . . . 13  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 2  x.  y ) )  =  ( 2  x.  y ) )
139138oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 2  x.  y ) ) )  =  ( 1  -  ( 2  x.  y
) ) )
140139fveq2d 5545 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )  =  ( F `  ( 1  -  (
2  x.  y ) ) ) )
141133, 140eqtr4d 2331 . . . . . . . . . 10  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 1  x.  ( 2  x.  y ) ) ) ) )
142129, 141syl 15 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( G `  ( 2  x.  y
) )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
143127, 142eqtrd 2328 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
144126, 143sylan2br 462 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  y  <_  (
1  /  2 ) ) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
145144anassrs 629 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
146125, 145eqtr4d 2331 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
147 iffalse 3585 . . . . . . . 8  |-  ( -.  y  <_  ( 1  /  2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
148147adantl 452 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
149148fveq2d 5545 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
150 elii2 18450 . . . . . . . 8  |-  ( ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_  ( 1  /  2 ) )  ->  y  e.  ( ( 1  /  2
) [,] 1 ) )
1518, 6, 16pcoval2 18530 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( ( 2  x.  y )  -  1 ) ) )
152 iihalf2 18447 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 ) )
153152adantl 452 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  ( 0 [,] 1 ) )
154135sseli 3189 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  RR )
155154recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  CC )
156 subcl 9067 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
15757, 155, 156sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
158157mulid2d 8869 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
159158oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) )
160 nncan 9092 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  ( ( 2  x.  y
)  -  1 ) )
16157, 155, 160sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( ( 2  x.  y )  - 
1 ) )
162159, 161eqtr2d 2329 . . . . . . . . . . 11  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  =  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
163153, 162syl 15 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
164163fveq2d 5545 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( F `  ( ( 2  x.  y )  -  1 ) )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
165151, 164eqtrd 2328 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
166150, 165sylan2 460 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_ 
( 1  /  2
) ) )  -> 
( ( G ( *p `  J ) F ) `  y
)  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
167166anassrs 629 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
168149, 167eqtr4d 2331 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
169146, 168pm2.61dan 766 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( ( G ( *p
`  J ) F ) `  y ) )
170122, 169eqtrd 2328 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( ( G ( *p
`  J ) F ) `  y ) )
171135sseli 3189 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  RR )
172171recnd 8877 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  CC )
173 mulcl 8837 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  y
)  e.  CC )
17450, 172, 173sylancr 644 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
175174adantl 452 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 2  x.  y )  e.  CC )
176175mul02d 9026 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 2  x.  y
) )  =  0 )
177176oveq2d 5890 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  ( 1  -  0 ) )
178177, 58syl6eq 2344 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  1 )
179 subcl 9067 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  y )  -  1 )  e.  CC )
180175, 57, 179sylancl 643 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  CC )
18157, 180, 156sylancr 644 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
182181mul02d 9026 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  0 )
183182oveq2d 5890 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  0 ) )
184183, 58syl6eq 2344 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  1 )
185178, 184ifeq12d 3594 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  1 ,  1 ) )
186 ifid 3610 . . . . . 6  |-  if ( y  <_  ( 1  /  2 ) ,  1 ,  1 )  =  1
187185, 186syl6eq 2344 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  1 )
188187fveq2d 5545 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 0  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( F `  1 ) )
189 simpl 443 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  s  =  y )
190189breq1d 4049 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
191 simpr 447 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  1 )  ->  t  =  1 )
192191oveq2d 5890 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  ( 1  -  1 ) )
193192, 11syl6eq 2344 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  0 )
194189oveq2d 5890 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
195193, 194oveq12d 5892 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 0  x.  ( 2  x.  y ) ) )
196195oveq2d 5890 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) )
197194oveq1d 5889 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
198197oveq2d 5890 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
199193, 198oveq12d 5892 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
200199oveq2d 5890 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
201190, 196, 200ifbieq12d 3600 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  1 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 0  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
202201fveq2d 5545 . . . . . 6  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
203 fvex 5555 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
204202, 30, 203ovmpt2a 5994 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
205104, 9, 204sylancl 643 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
20626fveq1i 5542 . . . . 5  |-  ( P `
 y )  =  ( ( ( 0 [,] 1 )  X. 
{ ( F ` 
1 ) } ) `
 y )
207 fvex 5555 . . . . . . 7  |-  ( F `
 1 )  e. 
_V
208207fvconst2 5745 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  1
) } ) `  y )  =  ( F `  1 ) )
209208adantl 452 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { ( F `
 1 ) } ) `  y )  =  ( F ` 
1 ) )
210206, 209syl5eq 2340 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( P `  y )  =  ( F `  1 ) )
211188, 205, 2103eqtr4d 2338 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( P `  y ) )
212 simpl 443 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  s  =  0 )
213212, 42syl6eqbr 4076 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  s  <_  (
1  /  2 ) )
214 iftrue 3584 . . . . . . . . . 10  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s
) ) ) )
215213, 214syl 15 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) )
216 simpr 447 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  t  =  y )
217216oveq2d 5890 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
218212oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  0 ) )
21950mul01i 9018 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
220218, 219syl6eq 2344 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  0 )
221217, 220oveq12d 5892 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( ( 1  -  y
)  x.  0 ) )
222221oveq2d 5890 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
223215, 222eqtrd 2328 . . . . . . . 8  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
224223fveq2d 5545 . . . . . . 7  |-  ( ( s  =  0  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
225 fvex 5555 . . . . . . 7  |-  ( F `
 ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  e. 
_V
226224, 30, 225ovmpt2a 5994 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
227105, 226mpan 651 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
228 subcl 9067 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1  -  y
)  e.  CC )
22957, 172, 228sylancr 644 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  y )  e.  CC )
230229mul01d 9027 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( 1  -  y
)  x.  0 )  =  0 )
231230oveq2d 5890 . . . . . . 7  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  ( 1  -  0 ) )
232231, 58syl6eq 2344 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  1 )
233232fveq2d 5545 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  =  ( F ` 
1 ) )
234227, 233eqtrd 2328 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F ` 
1 ) )
2358, 6pco0 18528 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  0 )  =  ( G ` 
0 ) )
236 oveq2 5882 . . . . . . . . 9  |-  ( x  =  0  ->  (
1  -  x )  =  ( 1  -  0 ) )
237236, 58syl6eq 2344 . . . . . . . 8  |-  ( x  =  0  ->  (
1  -  x )  =  1 )
238237fveq2d 5545 . . . . . . 7  |-  ( x  =  0  ->  ( F `  ( 1  -  x ) )  =  ( F `  1
) )
239238, 1, 207fvmpt 5618 . . . . . 6  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( G `  0 )  =  ( F ` 
1 ) )
240105, 239ax-mp 8 . . . . 5  |-  ( G `
 0 )  =  ( F `  1
)
241235, 240syl6req 2345 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
0 ) )
242234, 241sylan9eqr 2350 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( ( G ( *p
`  J ) F ) `  0 ) )
24340, 37ltnlei 8955 . . . . . . . . . . . 12  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
24443, 243mpbi 199 . . . . . . . . . . 11  |-  -.  1  <_  ( 1  /  2
)
245 simpl 443 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  s  =  1 )
246245breq1d 4049 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( s  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
247244, 246mtbiri 294 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  -.  s  <_  ( 1  /  2 ) )
248 iffalse 3585 . . . . . . . . . 10  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) )
249247, 248syl 15 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) ) )
250 simpr 447 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  t  =  y )
251250oveq2d 5890 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
252245oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  1 ) )
25350mulid1i 8855 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
254252, 253syl6eq 2344 . . . . . . . . . . . . . . 15  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  2 )
255254oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  ( 2  -  1 ) )
256 1p1e2 9856 . . . . . . . . . . . . . . 15  |-  ( 1  +  1 )  =  2
25750, 57, 57, 256subaddrii 9151 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
258255, 257syl6eq 2344 . . . . . . . . . . . . 13  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  1 )
259258oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  1 ) )
260259, 11syl6eq 2344 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  0 )
261251, 260oveq12d 5892 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( ( 1  -  y
)  x.  0 ) )
262261oveq2d 5890 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
263249, 262eqtrd 2328 . . . . . . . 8  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
264263fveq2d 5545 . . . . . . 7  |-  ( ( s  =  1  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
265264, 30, 225ovmpt2a 5994 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
2669, 265mpan 651 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
267266, 233eqtrd 2328 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F ` 
1 ) )
2688, 6pco1 18529 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  1 )  =  ( F ` 
1 ) )
269268eqcomd 2301 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
1 ) )
270267, 269sylan9eqr 2350 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( ( G ( *p
`  J ) F ) `  1 ) )
27117, 29, 103, 170, 211, 242, 270isphtpy2d 18501 . 2  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P ) )
272 ne0i 3474 . . . 4  |-  ( H  e.  ( ( G ( *p `  J
) F ) (
PHtpy `  J ) P )  ->  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) )
273271, 272syl 15 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) ( PHtpy `  J
) P )  =/=  (/) )
274 isphtpc 18508 . . 3  |-  ( ( G ( *p `  J ) F ) (  ~=ph  `  J ) P  <->  ( ( G ( *p `  J
) F )  e.  ( II  Cn  J
)  /\  P  e.  ( II  Cn  J
)  /\  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) ) )
27517, 29, 273, 274syl3anbrc 1136 . 2  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P )
276271, 275jca 518 1  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   (/)c0 3468   ifcif 3578   {csn 3653   U.cuni 3843   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   2c2 9811   (,)cioo 10672   [,]cicc 10675   ↾t crest 13341   topGenctg 13358   Topctop 16647  TopOnctopon 16648    Cn ccn 16970    tX ctx 17271   IIcii 18395   PHtpycphtpy 18482    ~=ph cphtpc 18483   *pcpco 18514
This theorem is referenced by:  pcorev  18541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pco 18519
  Copyright terms: Public domain W3C validator