MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval Unicode version

Theorem pcoval 18525
Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
pcoval  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
Distinct variable groups:    x, F    x, G    ph, x    x, J

Proof of Theorem pcoval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . 2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 pcoval.3 . 2  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
3 fveq1 5540 . . . . . 6  |-  ( f  =  F  ->  (
f `  ( 2  x.  x ) )  =  ( F `  (
2  x.  x ) ) )
43adantr 451 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  (
2  x.  x ) )  =  ( F `
 ( 2  x.  x ) ) )
5 fveq1 5540 . . . . . 6  |-  ( g  =  G  ->  (
g `  ( (
2  x.  x )  -  1 ) )  =  ( G `  ( ( 2  x.  x )  -  1 ) ) )
65adantl 452 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( g `  (
( 2  x.  x
)  -  1 ) )  =  ( G `
 ( ( 2  x.  x )  - 
1 ) ) )
74, 6ifeq12d 3594 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) )  =  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) )
87mpteq2dv 4123 . . 3  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) ) )
9 pcofval 18524 . . 3  |-  ( *p
`  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) )
10 ovex 5899 . . . 4  |-  ( 0 [,] 1 )  e. 
_V
1110mptex 5762 . . 3  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )  e.  _V
128, 9, 11ovmpt2a 5994 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J ) )  -> 
( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
131, 2, 12syl2anc 642 1  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ifcif 3578   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    x. cmul 8758    <_ cle 8884    - cmin 9053    / cdiv 9439   2c2 9811   [,]cicc 10675    Cn ccn 16970   IIcii 18395   *pcpco 18514
This theorem is referenced by:  pcovalg  18526  pco1  18529  pcocn  18531  copco  18532  pcopt  18536  pcopt2  18537  pcoass  18538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-top 16652  df-topon 16655  df-cn 16973  df-pco 18519
  Copyright terms: Public domain W3C validator