MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Unicode version

Theorem pcpre1 12942
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcpre1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 10100 . . . . . . . . . 10  |-  1  e.  ZZ
2 eleq1 2376 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  e.  ZZ  <->  1  e.  ZZ ) )
31, 2mpbiri 224 . . . . . . . . 9  |-  ( N  =  1  ->  N  e.  ZZ )
4 ax-1ne0 8851 . . . . . . . . . 10  |-  1  =/=  0
5 neeq1 2487 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  =/=  0  <->  1  =/=  0 ) )
64, 5mpbiri 224 . . . . . . . . 9  |-  ( N  =  1  ->  N  =/=  0 )
73, 6jca 518 . . . . . . . 8  |-  ( N  =  1  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
8 pclem.1 . . . . . . . . 9  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
9 pclem.2 . . . . . . . . 9  |-  S  =  sup ( A ,  RR ,  <  )
108, 9pcprecl 12939 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
117, 10sylan2 460 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
1211simprd 449 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  N )
13 simpr 447 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  N  =  1 )
1412, 13breqtrd 4084 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  1 )
15 eluz2b2 10337 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
1615simplbi 446 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
1716adantr 451 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  NN )
1811simpld 445 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
1917, 18nnexpcld 11313 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  NN )
2019nnzd 10163 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  ZZ )
21 1nn 9802 . . . . . 6  |-  1  e.  NN
22 dvdsle 12621 . . . . . 6  |-  ( ( ( P ^ S
)  e.  ZZ  /\  1  e.  NN )  ->  ( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2320, 21, 22sylancl 643 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2414, 23mpd 14 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  1 )
2517nncnd 9807 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  CC )
2625exp0d 11286 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ 0 )  =  1 )
2724, 26breqtrrd 4086 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  ( P ^ 0 ) )
2817nnred 9806 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  RR )
2918nn0zd 10162 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  ZZ )
30 0z 10082 . . . . 5  |-  0  e.  ZZ
3130a1i 10 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
0  e.  ZZ )
3215simprbi 450 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
3332adantr 451 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
1  <  P )
3428, 29, 31, 33leexp2d 11322 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  ( P ^ S )  <_  ( P ^
0 ) ) )
3527, 34mpbird 223 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  <_  0 )
3610simpld 445 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
377, 36sylan2 460 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
38 nn0le0eq0 10041 . . 3  |-  ( S  e.  NN0  ->  ( S  <_  0  <->  S  = 
0 ) )
3937, 38syl 15 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  S  =  0 ) )
4035, 39mpbid 201 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   {crab 2581   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   supcsup 7238   RRcr 8781   0cc0 8782   1c1 8783    < clt 8912    <_ cle 8913   NNcn 9791   2c2 9840   NN0cn0 10012   ZZcz 10071   ZZ>=cuz 10277   ^cexp 11151    || cdivides 12578
This theorem is referenced by:  pczpre  12947  pc1  12955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-rp 10402  df-fl 10972  df-seq 11094  df-exp 11152  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-dvds 12579
  Copyright terms: Public domain W3C validator