MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpremul Unicode version

Theorem pcpremul 12896
Description: Multiplicative property of the prime count pre-function. Note that the primality of  P is essential for this property;  ( 4  pCnt  2
)  =  0 but  ( 4  pCnt 
( 2  x.  2 ) )  =  1  =/=  2  x.  (
4  pCnt  2 )  =  0. Since this is needed to show uniqueness for the real prime count function (over  QQ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcpremul.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
pcpremul.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
pcpremul.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
Assertion
Ref Expression
pcpremul  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Distinct variable groups:    n, M    n, N    P, n
Allowed substitution hints:    S( n)    T( n)    U( n)

Proof of Theorem pcpremul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 12776 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
213ad2ant1 976 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ( ZZ>= ` 
2 ) )
3 zmulcl 10066 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
43ad2ant2r 727 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
543adant1 973 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
6 zcn 10029 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
76anim1i 551 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( M  e.  CC  /\  M  =/=  0 ) )
8 zcn 10029 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
98anim1i 551 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( N  e.  CC  /\  N  =/=  0 ) )
10 mulne0 9410 . . . . . . . 8  |-  ( ( ( M  e.  CC  /\  M  =/=  0 )  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
117, 9, 10syl2an 463 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
12113adant1 973 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
13 eqid 2283 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
1413pclem 12891 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ  /\  { n  e. 
NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } y  <_  x ) )
152, 5, 12, 14syl12anc 1180 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( { n  e. 
NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  C_  ZZ  /\ 
{ n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  =/=  (/) 
/\  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } y  <_  x ) )
1615simp1d 967 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ )
1715simp3d 969 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } y  <_  x )
18 simp2l 981 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  ZZ )
19 simp2r 982 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  =/=  0 )
20 eqid 2283 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  M }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  M }
21 pcpremul.1 . . . . . . . . . 10  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
2220, 21pcprecl 12892 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
232, 18, 19, 22syl12anc 1180 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
2423simpld 445 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
25 simp3l 983 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
26 simp3r 984 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  =/=  0 )
27 eqid 2283 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
28 pcpremul.2 . . . . . . . . . 10  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
2927, 28pcprecl 12892 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
302, 25, 26, 29syl12anc 1180 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
3130simpld 445 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  T  e.  NN0 )
3224, 31nn0addcld 10022 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  NN0 )
33 prmnn 12761 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  NN )
34333ad2ant1 976 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  NN )
3534nncnd 9762 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
3635, 31, 24expaddd 11247 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =  ( ( P ^ S )  x.  ( P ^ T ) ) )
3723simprd 449 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  ||  M )
3834, 24nnexpcld 11266 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  NN )
3938nnzd 10116 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  ZZ )
4034, 31nnexpcld 11266 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  NN )
4140nnzd 10116 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  ZZ )
42 dvdsmulc 12556 . . . . . . . . . 10  |-  ( ( ( P ^ S
)  e.  ZZ  /\  M  e.  ZZ  /\  ( P ^ T )  e.  ZZ )  ->  (
( P ^ S
)  ||  M  ->  ( ( P ^ S
)  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
4339, 18, 41, 42syl3anc 1182 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  ->  ( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
4437, 43mpd 14 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) )
4536, 44eqbrtrd 4043 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  ( P ^ T
) ) )
4630simprd 449 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  ||  N )
47 dvdscmul 12555 . . . . . . . . 9  |-  ( ( ( P ^ T
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( P ^ T
)  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
4841, 25, 18, 47syl3anc 1182 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
4946, 48mpd 14 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) )
5034, 32nnexpcld 11266 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  NN )
5150nnzd 10116 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  ZZ )
5218, 41zmulcld 10123 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) )  e.  ZZ )
53 dvdstr 12562 . . . . . . . 8  |-  ( ( ( P ^ ( S  +  T )
)  e.  ZZ  /\  ( M  x.  ( P ^ T ) )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( P ^
( S  +  T
) )  ||  ( M  x.  ( P ^ T ) )  /\  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  N ) ) )
5451, 52, 5, 53syl3anc 1182 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( S  +  T ) )  ||  ( M  x.  ( P ^ T ) )  /\  ( M  x.  ( P ^ T ) )  ||  ( M  x.  N ) )  ->  ( P ^
( S  +  T
) )  ||  ( M  x.  N )
) )
5545, 49, 54mp2and 660 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  N ) )
56 oveq2 5866 . . . . . . . 8  |-  ( x  =  ( S  +  T )  ->  ( P ^ x )  =  ( P ^ ( S  +  T )
) )
5756breq1d 4033 . . . . . . 7  |-  ( x  =  ( S  +  T )  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ ( S  +  T ) )  ||  ( M  x.  N
) ) )
5857elrab 2923 . . . . . 6  |-  ( ( S  +  T )  e.  { x  e. 
NN0  |  ( P ^ x )  ||  ( M  x.  N
) }  <->  ( ( S  +  T )  e.  NN0  /\  ( P ^ ( S  +  T ) )  ||  ( M  x.  N
) ) )
5932, 55, 58sylanbrc 645 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) } )
60 oveq2 5866 . . . . . . 7  |-  ( x  =  n  ->  ( P ^ x )  =  ( P ^ n
) )
6160breq1d 4033 . . . . . 6  |-  ( x  =  n  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ n )  ||  ( M  x.  N
) ) )
6261cbvrabv 2787 . . . . 5  |-  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
6359, 62syl6eleq 2373 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } )
64 suprzub 10309 . . . 4  |-  ( ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ  /\  E. x  e.  ZZ  A. y  e. 
{ n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } y  <_  x  /\  ( S  +  T )  e.  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } )  ->  ( S  +  T )  <_  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } ,  RR ,  <  ) )
6516, 17, 63, 64syl3anc 1182 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } ,  RR ,  <  ) )
66 pcpremul.3 . . 3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
6765, 66syl6breqr 4063 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  U )
6820, 21pcprendvds2 12894 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
692, 18, 19, 68syl12anc 1180 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
7027, 28pcprendvds2 12894 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
712, 25, 26, 70syl12anc 1180 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
72 ioran 476 . . . . 5  |-  ( -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) )  <-> 
( -.  P  ||  ( M  /  ( P ^ S ) )  /\  -.  P  ||  ( N  /  ( P ^ T ) ) ) )
7369, 71, 72sylanbrc 645 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) )
74 simp1 955 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
7538nnne0d 9790 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  =/=  0 )
76 dvdsval2 12534 . . . . . . 7  |-  ( ( ( P ^ S
)  e.  ZZ  /\  ( P ^ S )  =/=  0  /\  M  e.  ZZ )  ->  (
( P ^ S
)  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
7739, 75, 18, 76syl3anc 1182 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
7837, 77mpbid 201 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  /  ( P ^ S ) )  e.  ZZ )
7940nnne0d 9790 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  =/=  0 )
80 dvdsval2 12534 . . . . . . 7  |-  ( ( ( P ^ T
)  e.  ZZ  /\  ( P ^ T )  =/=  0  /\  N  e.  ZZ )  ->  (
( P ^ T
)  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8141, 79, 25, 80syl3anc 1182 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8246, 81mpbid 201 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  ( P ^ T ) )  e.  ZZ )
83 euclemma 12787 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  /  ( P ^ S ) )  e.  ZZ  /\  ( N  /  ( P ^ T ) )  e.  ZZ )  ->  ( P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
8474, 78, 82, 83syl3anc 1182 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  ||  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
8573, 84mtbird 292 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )
8613, 66pcprecl 12892 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( U  e.  NN0  /\  ( P ^ U )  ||  ( M  x.  N
) ) )
872, 5, 12, 86syl12anc 1180 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  NN0  /\  ( P ^ U
)  ||  ( M  x.  N ) ) )
8887simpld 445 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  NN0 )
89 nn0ltp1le 10074 . . . . 5  |-  ( ( ( S  +  T
)  e.  NN0  /\  U  e.  NN0 )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9032, 88, 89syl2anc 642 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9134nnzd 10116 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ZZ )
92 peano2nn0 10004 . . . . . . . 8  |-  ( ( S  +  T )  e.  NN0  ->  ( ( S  +  T )  +  1 )  e. 
NN0 )
9332, 92syl 15 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  NN0 )
94 dvdsexp 12584 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0  /\  U  e.  ( ZZ>= `  ( ( S  +  T )  +  1 ) ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) )
95943expia 1153 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0 )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
9691, 93, 95syl2anc 642 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
9787simprd 449 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  ||  ( M  x.  N ) )
9834, 93nnexpcld 11266 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  NN )
9998nnzd 10116 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ )
10034, 88nnexpcld 11266 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  NN )
101100nnzd 10116 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  ZZ )
102 dvdstr 12562 . . . . . . . 8  |-  ( ( ( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ  /\  ( P ^ U )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U ) 
||  ( M  x.  N ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10399, 101, 5, 102syl3anc 1182 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U )  ||  ( M  x.  N )
)  ->  ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( M  x.  N
) ) )
10497, 103mpan2d 655 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10596, 104syld 40 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
10693nn0zd 10115 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  ZZ )
10788nn0zd 10115 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  ZZ )
108 eluz 10241 . . . . . 6  |-  ( ( ( ( S  +  T )  +  1 )  e.  ZZ  /\  U  e.  ZZ )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
109106, 107, 108syl2anc 642 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
11035, 32expp1d 11246 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  =  ( ( P ^ ( S  +  T ) )  x.  P ) )
11118zcnd 10118 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  CC )
11225zcnd 10118 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
113111, 112mulcld 8855 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  CC )
11450nncnd 9762 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  CC )
11550nnne0d 9790 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =/=  0 )
116113, 114, 115divcan2d 9538 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( M  x.  N ) )
11736oveq2d 5874 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
11838nncnd 9762 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  CC )
11940nncnd 9762 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  CC )
120111, 118, 112, 119, 75, 79divmuldivd 9577 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
121117, 120eqtr4d 2318 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) )
122121oveq2d 5874 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
123116, 122eqtr3d 2317 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
124110, 123breq12d 4036 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  ( ( P ^ ( S  +  T )
)  x.  P ) 
||  ( ( P ^ ( S  +  T ) )  x.  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) ) ) ) )
12578, 82zmulcld 10123 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ )
126 dvdscmulr 12557 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ  /\  (
( P ^ ( S  +  T )
)  e.  ZZ  /\  ( P ^ ( S  +  T ) )  =/=  0 ) )  ->  ( ( ( P ^ ( S  +  T ) )  x.  P )  ||  ( ( P ^
( S  +  T
) )  x.  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
12791, 125, 51, 115, 126syl112anc 1186 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( S  +  T ) )  x.  P )  ||  (
( P ^ ( S  +  T )
)  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
128124, 127bitrd 244 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  P 
||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
129105, 109, 1283imtr3d 258 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( S  +  T )  +  1 )  <_  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13090, 129sylbid 206 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13185, 130mtod 168 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  T
)  <  U )
13232nn0red 10019 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  RR )
13388nn0red 10019 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  RR )
134132, 133eqleltd 8963 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  =  U  <-> 
( ( S  +  T )  <_  U  /\  -.  ( S  +  T )  <  U
) ) )
13567, 131, 134mpbir2and 888 1  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ^cexp 11104    || cdivides 12531   Primecprime 12758
This theorem is referenced by:  pceulem  12898  pcmul  12904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator