MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprendvds Unicode version

Theorem pcprendvds 12893
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.1 . . . . 5  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . . . 5  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprecl 12892 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
43simpld 445 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
5 nn0re 9974 . . 3  |-  ( S  e.  NN0  ->  S  e.  RR )
6 ltp1 9594 . . . 4  |-  ( S  e.  RR  ->  S  <  ( S  +  1 ) )
7 peano2re 8985 . . . . 5  |-  ( S  e.  RR  ->  ( S  +  1 )  e.  RR )
8 ltnle 8902 . . . . 5  |-  ( ( S  e.  RR  /\  ( S  +  1
)  e.  RR )  ->  ( S  < 
( S  +  1 )  <->  -.  ( S  +  1 )  <_  S ) )
97, 8mpdan 649 . . . 4  |-  ( S  e.  RR  ->  ( S  <  ( S  + 
1 )  <->  -.  ( S  +  1 )  <_  S ) )
106, 9mpbid 201 . . 3  |-  ( S  e.  RR  ->  -.  ( S  +  1
)  <_  S )
114, 5, 103syl 18 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  1 )  <_  S )
121pclem 12891 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
13 peano2nn0 10004 . . . 4  |-  ( S  e.  NN0  ->  ( S  +  1 )  e. 
NN0 )
14 oveq2 5866 . . . . . . 7  |-  ( x  =  ( S  + 
1 )  ->  ( P ^ x )  =  ( P ^ ( S  +  1 ) ) )
1514breq1d 4033 . . . . . 6  |-  ( x  =  ( S  + 
1 )  ->  (
( P ^ x
)  ||  N  <->  ( P ^ ( S  + 
1 ) )  ||  N ) )
16 oveq2 5866 . . . . . . . . 9  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
1716breq1d 4033 . . . . . . . 8  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1817cbvrabv 2787 . . . . . . 7  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
191, 18eqtri 2303 . . . . . 6  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
2015, 19elrab2 2925 . . . . 5  |-  ( ( S  +  1 )  e.  A  <->  ( ( S  +  1 )  e.  NN0  /\  ( P ^ ( S  + 
1 ) )  ||  N ) )
2120simplbi2 608 . . . 4  |-  ( ( S  +  1 )  e.  NN0  ->  ( ( P ^ ( S  +  1 ) ) 
||  N  ->  ( S  +  1 )  e.  A ) )
224, 13, 213syl 18 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  e.  A ) )
23 suprzub 10309 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  ( S  + 
1 )  e.  A
)  ->  ( S  +  1 )  <_  sup ( A ,  RR ,  <  ) )
2423, 2syl6breqr 4063 . . . . 5  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  ( S  + 
1 )  e.  A
)  ->  ( S  +  1 )  <_  S )
25243expia 1153 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x )  ->  ( ( S  +  1 )  e.  A  ->  ( S  +  1 )  <_  S ) )
26253adant2 974 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)  ->  ( ( S  +  1 )  e.  A  ->  ( S  +  1 )  <_  S ) )
2712, 22, 26sylsyld 52 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  1 ) )  ||  N  ->  ( S  +  1 )  <_  S )
)
2811, 27mtod 168 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ^cexp 11104    || cdivides 12531
This theorem is referenced by:  pcprendvds2  12894  pczndvds  12917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532
  Copyright terms: Public domain W3C validator