MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Unicode version

Theorem pcprmpw2 12934
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Distinct variable groups:    A, n    P, n

Proof of Theorem pcprmpw2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simplr 731 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN )
21nnnn0d 10018 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN0 )
3 prmnn 12761 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
43ad2antrr 706 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  NN )
5 pccl 12902 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
65adantr 451 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  NN0 )
74, 6nnexpcld 11266 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
87nnnn0d 10018 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN0 )
96nn0red 10019 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  RR )
109leidd 9339 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
11 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  Prime )
126nn0zd 10115 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  ZZ )
13 pcid 12925 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  ( P  pCnt  A )  e.  ZZ )  ->  ( P  pCnt  ( P ^
( P  pCnt  A
) ) )  =  ( P  pCnt  A
) )
1411, 12, 13syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  A ) )
1510, 14breqtrrd 4049 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
1615ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
17 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1817oveq1d 5873 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  =  ( P  pCnt  A )
)
1917oveq1d 5873 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  ( P ^
( P  pCnt  A
) ) ) )
2016, 18, 193brtr4d 4053 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
21 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  ||  ( P ^ n ) )
22 prmz 12762 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2322adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
241adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  NN )
2524nnzd 10116 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
26 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  n  e.  NN0 )
274, 26nnexpcld 11266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ n )  e.  NN )
2827adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  NN )
2928nnzd 10116 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  ZZ )
30 dvdstr 12562 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  ( P ^ n )  e.  ZZ )  ->  (
( p  ||  A  /\  A  ||  ( P ^ n ) )  ->  p  ||  ( P ^ n ) ) )
3123, 25, 29, 30syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  A  ||  ( P ^
n ) )  ->  p  ||  ( P ^
n ) ) )
3221, 31mpan2d 655 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  ||  ( P ^ n
) ) )
33 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
3411adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e. 
Prime )
35 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  n  e. 
NN0 )
36 prmdvdsexpr 12795 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  ( p  ||  ( P ^ n
)  ->  p  =  P ) )
3733, 34, 35, 36syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( P ^
n )  ->  p  =  P ) )
3832, 37syld 40 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  =  P ) )
3938necon3ad 2482 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =/=  P  ->  -.  p  ||  A ) )
4039imp 418 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  -.  p  ||  A )
41 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  p  e.  Prime )
421ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  A  e.  NN )
43 pceq0 12923 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  =  0  <->  -.  p  ||  A ) )
4441, 42, 43syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( (
p  pCnt  A )  =  0  <->  -.  p  ||  A ) )
4540, 44mpbird 223 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  =  0 )
467ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
4741, 46pccld 12903 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  e.  NN0 )
4847nn0ge0d 10021 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  0  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
4945, 48eqbrtrd 4043 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5020, 49pm2.61dane 2524 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5150ralrimiva 2626 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
521nnzd 10116 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  ZZ )
537nnzd 10116 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
54 pc2dvds 12931 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( P ^ ( P 
pCnt  A ) )  e.  ZZ )  ->  ( A  ||  ( P ^
( P  pCnt  A
) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5552, 53, 54syl2anc 642 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( A  ||  ( P ^ ( P  pCnt  A ) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5651, 55mpbird 223 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  ||  ( P ^ ( P  pCnt  A ) ) )
57 pcdvds 12916 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
5857adantr 451 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
59 dvdseq 12576 . . . . 5  |-  ( ( ( A  e.  NN0  /\  ( P ^ ( P  pCnt  A ) )  e.  NN0 )  /\  ( A  ||  ( P ^ ( P  pCnt  A ) )  /\  ( P ^ ( P  pCnt  A ) )  ||  A
) )  ->  A  =  ( P ^
( P  pCnt  A
) ) )
602, 8, 56, 58, 59syl22anc 1183 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) )
6160expr 598 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  n  e.  NN0 )  ->  ( A  ||  ( P ^ n )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
6261rexlimdva 2667 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  ->  A  =  ( P ^
( P  pCnt  A
) ) ) )
633adantr 451 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  NN )
6463, 5nnexpcld 11266 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
6564nnzd 10116 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
66 iddvds 12542 . . . . 5  |-  ( ( P ^ ( P 
pCnt  A ) )  e.  ZZ  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
6765, 66syl 15 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
68 oveq2 5866 . . . . . 6  |-  ( n  =  ( P  pCnt  A )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  A ) ) )
6968breq2d 4035 . . . . 5  |-  ( n  =  ( P  pCnt  A )  ->  ( ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) ) )
7069rspcev 2884 . . . 4  |-  ( ( ( P  pCnt  A
)  e.  NN0  /\  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ ( P 
pCnt  A ) ) )  ->  E. n  e.  NN0  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ n ) )
715, 67, 70syl2anc 642 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) )
72 breq1 4026 . . . 4  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( A  ||  ( P ^
n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n ) ) )
7372rexbidv 2564 . . 3  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) ) )
7471, 73syl5ibrcom 213 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( A  =  ( P ^ ( P  pCnt  A ) )  ->  E. n  e.  NN0  A  ||  ( P ^ n ) ) )
7562, 74impbid 183 1  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   0cc0 8737    <_ cle 8868   NNcn 9746   NN0cn0 9965   ZZcz 10024   ^cexp 11104    || cdivides 12531   Primecprime 12758    pCnt cpc 12889
This theorem is referenced by:  pcprmpw  12935  pgpfi1  14906  pgpfi  14916  sylow2alem2  14929  lt6abl  15181  pgpfac1lem3a  15311  dvdsppwf1o  20426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890
  Copyright terms: Public domain W3C validator